Nazzy Pakpour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2944911/publications.pdf

Version: 2024-02-01

567281 839539 5,804 21 15 18 citations h-index g-index papers 21 21 21 14902 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Highly evolvable malaria vectors: The genomes of 16 <i>Anopheles</i> mosquitoes. Science, 2015, 347, 1258522.	12.6	492
3	Activation of Akt Signaling Reduces the Prevalence and Intensity of Malaria Parasite Infection and Lifespan in Anopheles stephensi Mosquitoes. PLoS Pathogens, 2010, 6, e1001003.	4.7	138
4	Ingested Human Insulin Inhibits the Mosquito NF-κB-Dependent Immune Response to Plasmodium falciparum. Infection and Immunity, 2012, 80, 2141-2149.	2.2	60
5	Reactive Oxygen Species-Dependent Cell Signaling Regulates the Mosquito Immune Response to <i>Plasmodium falciparum</i> . Antioxidants and Redox Signaling, 2011, 14, 943-955.	5.4	52
6	Sustained Activation of Akt Elicits Mitochondrial Dysfunction to Block Plasmodium falciparum Infection in the Mosquito Host. PLoS Pathogens, 2013, 9, e1003180.	4.7	52
7	Overexpression of phosphatase and tensin homolog improves fitness and decreases Plasmodium falciparum development in Anopheles stephensi. Microbes and Infection, 2013, 15, 775-787.	1.9	41
8	Effects of ingested vertebrate-derived factors on insect immune responses. Current Opinion in Insect Science, 2014, 3, 1-5.	4.4	36
9	Mast cells and histamine alter intestinal permeability during malaria parasite infection. Immunobiology, 2016, 221, 468-474.	1.9	36
10	The effects of ingested mammalian blood factors on vector arthropod immunity and physiology. Microbes and Infection, 2013, 15, 243-254.	1.9	34
11	Human IGF1 Regulates Midgut Oxidative Stress and Epithelial Homeostasis to Balance Lifespan and Plasmodium falciparum resistance in Anopheles stephensi. PLoS Pathogens, 2014, 10, e1004231.	4.7	34
12	Inhibition of JNK signaling in the Asian malaria vector Anopheles stephensi extends mosquito longevity and improves resistance to Plasmodium falciparum infection. PLoS Pathogens, 2018, 14, e1007418.	4.7	25
13	Protein Kinase C-Dependent Signaling Controls the Midgut Epithelial Barrier to Malaria Parasite Infection in Anopheline Mosquitoes. PLoS ONE, 2013, 8, e76535.	2.5	21
14	Host–pathogen interactions in malaria: cross-kingdom signaling and mitochondrial regulation. Current Opinion in Immunology, 2015, 36, 73-79.	5 . 5	19
15	Anopheles stephensi p38 MAPK signaling regulates innate immunity and bioenergetics during Plasmodium falciparum infection. Parasites and Vectors, 2015, 8, 424.	2.5	18
16	Two insulin-like peptides differentially regulate malaria parasite infection in the mosquito through effects on intermediary metabolism. Biochemical Journal, 2016, 473, 3487-3503.	3.7	18
17	CSU East Bay Hack Day: A University hackathon to combat malaria and zika with drones., 2017,,.		12
18	Enhanced transmission of malaria parasites to mosquitoes in a murine model of type 2 diabetes. Malaria Journal, 2016, 15, 231.	2.3	11

#	Article	IF	CITATIONS
19	Transfection and Mutagenesis of Target Genes in Mosquito Cells by Locked Nucleic Acid-modified Oligonucleotides. Journal of Visualized Experiments, 2010, , .	0.3	3
20	Modeling Host–Vector–Pathogen Immuno-inflammatory Interactions in Malaria. , 2013, , 265-279.		1
21	The effects of type 2 diabetes onPlasmodiuminfection and transmission. , 2016, , .		O