Diane R Campbell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2944486/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selection of Floral Traits by Pollinators and Seed Predators during Sequential Life History Stages. American Naturalist, 2022, 199, 808-823.	1.0	7
2	Earlier snow melt and reduced summer precipitation alter floral traits important to pollination. Global Change Biology, 2022, 28, 323-339.	4.2	12
3	Variation in floral volatiles across time, sexes, and populations of windâ€pollinated <i>Schiedea globosa</i> . American Journal of Botany, 2022, 109, 345-360.	0.8	4
4	Phenotypic plasticity and selection on leaf traits in response to snowmelt timing and summer precipitation. New Phytologist, 2022, 234, 1477-1490.	3.5	9
5	Comparative impacts of longâ€ŧerm trends in snowmelt and species interactions on plant population dynamics. Journal of Ecology, 2022, 110, 1102-1112.	1.9	0
6	Unraveling the ecological and evolutionary impacts of a plant invader on the pollination of a native plant. Biological Invasions, 2021, 23, 1533-1547.	1.2	0
7	Experimental Test of the Combined Effects of Water Availability and Flowering Time on Pollinator Visitation and Seed Set. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	6
8	Water availability affects the relationship between pollen intensity and seed production. AoB PLANTS, 2021, 13, plab074.	1.2	2
9	Floral Scent Composition and Fine-Scale Timing in Two Moth-Pollinated Hawaiian Schiedea (Caryophyllaceae). Frontiers in Plant Science, 2020, 11, 1116.	1.7	13
10	Global gradients in intraspecific variation in vegetative and floral traits are partially associated with climate and species richness. Global Ecology and Biogeography, 2020, 29, 992-1007.	2.7	51
11	Pollinator visitation rate and effectiveness vary with flowering phenology. American Journal of Botany, 2020, 107, 445-455.	0.8	16
12	Advanced phenology of intraguild predators shifts herbivore host plant preference and performance. Ecological Entomology, 2020, 45, 1004-1014.	1.1	1
13	Differences in Flowering Phenology Are Likely Not the Product of Competition for Pollination in <i>Clarkia</i> Communities. International Journal of Plant Sciences, 2019, 180, 974-986.	0.6	6
14	Early snowmelt projected to cause population decline in a subalpine plant. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12901-12906.	3.3	32
15	Water influences how seed production responds to conspecific and heterospecific pollen. American Journal of Botany, 2019, 106, 713-721.	0.8	4
16	Phenotypic plasticity of floral volatiles in response to increasing drought stress. Annals of Botany, 2019, 123, 601-610.	1.4	69
17	Clines in traits compared over two decades in a plant hybrid zone. Annals of Botany, 2018, 122, 315-324.	1.4	16
18	Shifts in water availability mediate plant–pollinator interactions. New Phytologist, 2017, 215, 792-802.	3.5	88

#	Article	IF	CITATIONS
19	ls Plant Fitness Proportional to Seed Set? An Experiment and a Spatial Model. American Naturalist, 2017, 190, 818-827.	1.0	17
20	An enigmatic Hawaiian moth is a missing link in the adaptive radiation of <i>Schiedea</i> . New Phytologist, 2017, 213, 1533-1542.	3.5	9
21	Reproductive isolation between <i>Zaluzianskya</i> species: the influence of volatiles and flower orientation on hawkmoth foraging choices. New Phytologist, 2016, 210, 333-342.	3.5	40
22	Pollination of a native plant changes with distance and density of invasive plants in a simulated biological invasion. American Journal of Botany, 2016, 103, 1458-1465.	0.8	26
23	Timing of invasive pollen deposition influences pollen tube growth and seed set in a native plant. Biological Invasions, 2016, 18, 1701-1711.	1.2	13
24	Natural selection on floral morphology can be influenced by climate. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150178.	1.2	42
25	Improving our chemistry: challenges and opportunities in the interdisciplinary study of floral volatiles. Natural Product Reports, 2015, 32, 893-903.	5.2	24
26	Context-dependent reproductive isolation mediated by floral scent and color. Evolution; International Journal of Organic Evolution, 2015, 69, 1-13.	1.1	60
27	Floral neighborhood influences pollinator assemblages and effective pollination in a native plant. Oecologia, 2014, 176, 465-476.	0.9	38
28	Selection of trait combinations through bee and fly visitation to flowers of <i>Polemonium foliosissimum</i> . Journal of Evolutionary Biology, 2014, 27, 325-336.	0.8	18
29	Floral scent in natural hybrids of Ipomopsis (Polemoniaceae) and their parental species. Annals of Botany, 2014, 113, 533-544.	1.4	34
30	Soil fertility and parasitoids shape herbivore selection on plants. Journal of Ecology, 2014, 102, 1120-1128.	1.9	9
31	The relative importance of solitary bees and syrphid flies as pollinators of two outcrossing plant species in the New Zealand alpine. Austral Ecology, 2013, 38, 169-176.	0.7	41
32	Selection for a floral trait is not mediated by pollen receipt even though seed set in the population is pollenâ€limited. Functional Ecology, 2013, 27, 1117-1125.	1.7	12
33	Measure for measure: Comparing morphological and biomass traits for sex allocation in two gynodioecious species. American Journal of Botany, 2013, 100, 1071-1082.	0.8	6
34	Altered precipitation affects plant hybrids differently than their parental species. American Journal of Botany, 2013, 100, 1322-1331.	0.8	22
35	Geographical Variation in Hybridization of <i>Ipomopsis</i> (Polemoniaceae): Testing the Role of Photosynthetic Responses to Temperature and Water. International Journal of Plant Sciences, 2013, 174, 57-64.	0.6	3
36	Where have all the blue flowers gone: pollinator responses and selection on flower colour in New Zealand <i>Wahlenbergia albomarginata</i> . Journal of Evolutionary Biology, 2012, 25, 352-364.	0.8	28

#	Article	IF	CITATIONS
37	Butterflies show flower colour preferences but not constancy in foraging at four plant species. Ecological Entomology, 2011, 36, 290-300.	1.1	43
38	GENETIC VARIATION AND COVARIATION IN FLORAL ALLOCATION OF TWO SPECIES OF SCHIEDEA WITH CONTRASTING LEVELS OF SEXUAL DIMORPHISM. Evolution; International Journal of Organic Evolution, 2011, 65, 757-770.	1.1	25
39	Density-dependent demographic responses of a semelparous plant to natural variation in seed rain. Oikos, 2010, 119, 1929-1935.	1.2	19
40	Photosynthetic and growth responses of reciprocal hybrids to variation in water and nitrogen availability. American Journal of Botany, 2010, 97, 925-933.	0.8	33
41	Flower color influences insect visitation in alpine New Zealand. Ecology, 2010, 91, 2638-2649.	1.5	96
42	Using phenotypic manipulations to study multivariate selection of floral trait associations. Annals of Botany, 2009, 103, 1557-1566.	1.4	49
43	Genetic and morphological patterns show variation in frequency of hybrids between Ipomopsis (Polemoniaceae) zones of sympatry. Heredity, 2009, 102, 257-265.	1.2	28
44	Physiological differences among two <i>Penstemon</i> species and their hybrids in field and common garden environments. New Phytologist, 2009, 181, 478-488.	3.5	16
45	Ovule number per flower in a world of unpredictable pollination. American Journal of Botany, 2009, 96, 1159-1167.	0.8	81
46	LIFETIME FITNESS IN TWO GENERATIONS OF <i>IPOMOPSIS</i> HYBRIDS. Evolution; International Journal of Organic Evolution, 2008, 62, 2616-2627.	1.1	37
47	Sexual dimorphism and the genetic potential for evolution of sex allocation in the gynodioecious plant, <i>Schiedea salicaria</i> . Journal of Evolutionary Biology, 2008, 21, 18-29.	0.8	18
48	Differential performance of reciprocal hybrids in multiple environments. Journal of Ecology, 2008, 96, 1306-1318.	1.9	53
49	Pollinator Shifts and the Origin and Loss of Plant Species1. Annals of the Missouri Botanical Garden, 2008, 95, 264-274.	1.3	22
50	Effects of Aggregation Size and Host Plant on the Survival of an Ant-Tended Membracid (Hemiptera:) Tj ETQq0 0 Entomological Society of America, 2008, 101, 70-78.	0 rgBT /O [.] 1.3	verlock 10 Tf 7
51	BRIDGING THE GENERATION GAP IN PLANTS: POLLINATION, PARENTAL FECUNDITY, AND OFFSPRING DEMOGRAPHY. Ecology, 2008, 89, 1596-1604.	1.5	58
52	Leaf physiology reflects environmental differences and cytoplasmic background in <i>lpomopsis</i> (Polemoniaceae) hybrids. American Journal of Botany, 2007, 94, 1804-1812.	0.8	20
53	Evolutionary Dynamics of an Ipomopsis Hybrid Zone: Confronting Models with Lifetime Fitness Data. American Naturalist, 2007, 169, 298-310.	1.0	64
54	Sexually dimorphic inflorescence traits in a windâ€pollinated species: heritabilities and genetic correlations in <i>Schiedea adamantis</i> (Caryophyllaceae). American Journal of Botany, 2007, 94, 1716-1725.	0.8	11

#	Article	IF	CITATIONS
55	VARIATION IN POLLINATOR PREFERENCE BETWEEN TWO IPOMOPSIS CONTACT SITES THAT DIFFER IN HYBRIDIZATION RATE. Evolution; International Journal of Organic Evolution, 2007, 61, 99-110.	1.1	63
56	Predicting the pathway to wind pollination: heritabilities and genetic correlations of inflorescence traits associated with wind pollination in Schiedea salicaria (Caryophyllaceae). Journal of Evolutionary Biology, 2006, 19, 331-342.	0.8	42
57	Genetic variation of ecophysiological traits in two gynodioecious species of Schiedea (Caryophyllaceae). New Phytologist, 2006, 169, 589-601.	3.5	29
58	Environmental stressors differentially affect leaf ecophysiological responses in two Ipomopsis species and their hybrids. Oecologia, 2006, 148, 202-212.	0.9	33
59	Asymmetrical pollen success in <i>Ipomopsis</i> (Polemoniaceae) contact sites. American Journal of Botany, 2006, 93, 903-909.	0.8	23
60	Cytoplasmic and nuclear markers reveal contrasting patterns of spatial genetic structure in a natural Ipomopsis hybrid zone. Molecular Ecology, 2005, 14, 781-792.	2.0	59
61	Ecophysiology of first and second generation hybrids in a natural plant hybrid zone. Oecologia, 2005, 144, 214-225.	0.9	38
62	Pollen Limitation of Plant Reproduction: Pattern and Process. Annual Review of Ecology, Evolution, and Systematics, 2005, 36, 467-497.	3.8	888
63	TEMPORAL AND SPATIAL VARIATION IN POLLINATION OF A MONTANE HERB: A SEVEN-YEAR STUDY. Ecology, 2005, 86, 2106-2116.	1.5	191
64	Natural selection in Ipomopsis hybrid zones: implications for ecological speciation. New Phytologist, 2004, 161, 83-90.	3.5	88
65	POLLEN LIMITATION OF PLANT REPRODUCTION: ECOLOGICAL AND EVOLUTIONARY CAUSES AND CONSEQUENCES. Ecology, 2004, 85, 2408-2421.	1.5	1,004
66	Ecological Speciation in Flowering Plants. , 2004, , 264-277.		60
67	Reproductive isolation and hybrid pollen disadvantage in Ipomopsis. Journal of Evolutionary Biology, 2003, 16, 536-540.	0.8	42
68	Predicting Patterns of Mating and Potential Hybridization from Pollinator Behavior. American Naturalist, 2002, 159, 438-450.	1.0	54
69	Resistance to pre-dispersal seed predators in a natural hybrid zone. Oecologia, 2002, 131, 436-443.	0.9	22
70	Tests of pre- and postpollination barriers to hybridization between sympatric species oflpomopsis(Polemoniaceae). American Journal of Botany, 2001, 88, 213-219.	0.8	48
71	GENOTYPE-BY-ENVIRONMENT INTERACTION AND THE FITNESS OF PLANT HYBRIDS IN THE WILD. Evolution; International Journal of Organic Evolution, 2001, 55, 669.	1.1	134
72	GENOTYPE-BY-ENVIRONMENT INTERACTION AND THE FITNESS OF PLANT HYBRIDS IN THE WILD. Evolution; International Journal of Organic Evolution, 2001, 55, 669-676.	1.1	24

#	Article	IF	CITATIONS
73	Absence of conspecific pollen advantage in the dynamics of an Ipomopsis (Polemoniaceae) hybrid zone. American Journal of Botany, 2000, 87, 819-824.	0.8	24
74	Experimental tests of sex-allocation theory in plants. Trends in Ecology and Evolution, 2000, 15, 227-232.	4.2	137
75	Landscape approaches to historical and contemporary gene flow in plants. Trends in Ecology and Evolution, 1999, 14, 219-224.	4.2	337
76	THE CONSEQUENCES OF FLORAL HERBIVORY FOR POLLINATOR SERVICE TOISOMERIS ARBOREA. Ecology, 1999, 80, 125-134.	1.5	153
77	The Consequences of Floral Herbivory for Pollinator Service to Isomeris arborea. Ecology, 1999, 80, 125.	1.5	75
78	Adaptive Significance of Flower Color and Inter-Trait Correlations in an Ipomopsis Hybrid Zone. Evolution; International Journal of Organic Evolution, 1998, 52, 1293.	1.1	37
79	Multiple paternity in fruits of Ipomopsis Aggregata (Polemoniaceae). American Journal of Botany, 1998, 85, 1022-1027.	0.8	49
80	Pollen Transfer by Natural Hybrids and Parental Species in an Ipomopsis Hybrid Zone. Evolution; International Journal of Organic Evolution, 1998, 52, 1602.	1.1	25
81	Variation in Lifetime Male Fitness inIpomopsis aggregata: Tests of Sex Allocation Theory. American Naturalist, 1998, 152, 338-353.	1.0	25
82	ADAPTIVE SIGNIFICANCE OF FLOWER COLOR AND INTERâ€TRAIT CORRELATIONS IN AN <i>IPOMOPSIS</i> HYBRID ZONE. Evolution; International Journal of Organic Evolution, 1998, 52, 1293-1303.	1.1	82
83	POLLEN TRANSFER BY NATURAL HYBRIDS AND PARENTAL SPECIES IN AN <i>IPOMOPSIS</i> HYBRID ZONE. Evolution; International Journal of Organic Evolution, 1998, 52, 1602-1611.	1.1	58
84	Hummingbird Behavior and Mechanisms of Selection on Flower Color in Ipomopsis. Ecology, 1997, 78, 2532.	1.5	14
85	Analyzing Pollinator-Mediated Selection in a Plant Hybrid Zone: Hummingbird Visitation Patterns on Three Spatial Scales. American Naturalist, 1997, 149, 295-315.	1.0	202
86	GENETIC AND ENVIRONMENTAL VARIATION IN LIFEâ€HISTORY TRAITS OF A MONOCARPIC PERENNIAL: A DECADEâ€LONG FIELD EXPERIMENT. Evolution; International Journal of Organic Evolution, 1997, 51, 373-382.	1.1	79
87	Genetic and Environmental Variation in Life-History Traits of a Monocarpic Perennial: A Decade-Long Field Experiment. Evolution; International Journal of Organic Evolution, 1997, 51, 373.	1.1	35
88	HUMMINGBIRD BEHAVIOR AND MECHANISMS OF SELECTION ON FLOWER COLOR INIPOMOPSIS. Ecology, 1997, 78, 2532-2541.	1.5	144
89	Genetic correlation between biomass allocation to male and female functions in a natural population of Ipomopsis aggregata. Heredity, 1997, 79, 606-614.	1.2	48
90	Genetic correlation between biomass allocation to male and female functions in a natural population of Ipomopsis aggregata. Heredity, 1997, 79, 606-614.	1.2	13

#	Article	IF	CITATIONS
91	Evolution of Floral Traits in a Hermaphroditic Plant: Field Measurements of Heritabilities and Genetic Correlations. Evolution; International Journal of Organic Evolution, 1996, 50, 1442.	1.1	80
92	Mechanisms of Hummingbird-Mediated Selection for Flower width in Ipomopsis Aggregata. Ecology, 1996, 77, 1463-1472.	1.5	150
93	EVOLUTION OF FLORAL TRAITS IN A HERMAPHRODITIC PLANT: FIELD MEASUREMENTS OF HERITABILITIES AND GENETIC CORRELATIONS. Evolution; International Journal of Organic Evolution, 1996, 50, 1442-1453.	1.1	149
94	INDIRECT SELECTION OF STIGMA POSITION IN <i>IPOMOPSIS AGGREGATA</i> VIA A GENETICALLY CORRELATED TRAIT. Evolution; International Journal of Organic Evolution, 1994, 48, 55-68.	1.1	92
95	Indirect Selection of Stigma Position in Ipomopsis aggregata via a Genetically Correlated Trait. Evolution; International Journal of Organic Evolution, 1994, 48, 55.	1.1	30
96	Resource and Pollen Limitations to Lifetime Seed Production in a Natural Plant Population. Ecology, 1993, 74, 1043-1051.	1.5	311
97	Variation in Sex Allocation and Floral Morphology in Ipomopsis aggregata (Polemoniaceae). American Journal of Botany, 1992, 79, 516.	0.8	14
98	VARIATION IN SEX ALLOCATION AND FLORAL MORPHOLOGY IN IPOMOPSIS AGGREGATA (POLEMONIACEAE). American Journal of Botany, 1992, 79, 516-521.	0.8	32
99	The Spatial Scale of Genetic Differentiation in a Hummingbird-Pollinated Plant: Comparison with Models of Isolation by Distance. American Naturalist, 1992, 139, 735-748.	1.0	106
100	Plant Genotype: A Variable Factor in Insect–Plant Interactions. , 1992, , 75-111.		18
101	Comparing Pollen Dispersal and Gene Flow in a Natural Population. Evolution; International Journal of Organic Evolution, 1991, 45, 1965.	1.1	28
102	Components of Phenotypic Selection: Pollen Export and Flower Corrolla Width in Ipomopsis aggregata. Evolution; International Journal of Organic Evolution, 1991, 45, 1458.	1.1	105
103	COMPONENTS OF PHENOTYPIC SELECTION: POLLEN EXPORT AND FLOWER COROLLA WIDTH IN <i>IPOMOPSIS AGGREGATA</i> . Evolution; International Journal of Organic Evolution, 1991, 45, 1458-1467.	1.1	231
104	COMPARING POLLEN DISPERSAL AND GENE FLOW IN A NATURAL POPULATION. Evolution; International Journal of Organic Evolution, 1991, 45, 1965-1968.	1.1	149
105	Effects of Floral Traits on Sequential Components of Fitness in Ipomopsis aggregata. American Naturalist, 1991, 137, 713-737.	1.0	170
106	INFLORESCENCE SIZE: TEST OF THE MALE FUNCTION HYPOTHESIS. American Journal of Botany, 1989, 76, 730-738.	0.8	104
107	Inflorescence Size: Test of the Male Function Hypothesis. American Journal of Botany, 1989, 76, 730.	0.8	46
108	Variation in Pollen Flow Within and Among Populations of Ipomopsis aggregata. Evolution; International Journal of Organic Evolution, 1989, 43, 1444.	1.1	26

#	Article	IF	CITATIONS
109	Measurements of Selection in a Hermaphroditic Plant: Variation in Male and Female Pollination Success. Evolution; International Journal of Organic Evolution, 1989, 43, 318.	1.1	105
110	VARIATION IN POLLEN FLOW WITHIN AND AMONG POPULATIONS OF <i>IPOMOPSIS AGGREGATA</i> . Evolution; International Journal of Organic Evolution, 1989, 43, 1444-1455.	1.1	92
111	MEASUREMENTS OF SELECTION IN A HERMAPHRODITIC PLANT: VARIATION IN MALE AND FEMALE POLLINATION SUCCESS. Evolution; International Journal of Organic Evolution, 1989, 43, 318-334.	1.1	294
112	Interpopulational Variation in Fruit Production: The Role of Pollination-Limitation in the Olympic Mountains. American Journal of Botany, 1987, 74, 269.	0.8	28
113	The Evolution of Plant Mating Systems: Multilocus Simulations of Pollen Dispersal. American Naturalist, 1987, 129, 593-609.	1.0	53
114	INTERPOPULATIONAL VARIATION IN FRUIT PRODUCTION: THE ROLE OF POLLINATION‣IMITATION IN THE OLYMPIC MOUNTAINS. American Journal of Botany, 1987, 74, 269-273.	0.8	42
115	Predicting Plant Reproductive Success from Models of Competition for Pollination. Oikos, 1986, 47, 257.	1.2	34
116	POLLEN AND GENE DISPERSAL: THE INFLUENCES OF COMPETITION FOR POLLINATION. Evolution; International Journal of Organic Evolution, 1985, 39, 418-431.	1.1	100
117	Pollinator Sharing and Seed Set of Stellaria pubera: Competition for Pollination. Ecology, 1985, 66, 544-553.	1.5	159
118	Pollen and Gene Dispersal: The Influences of Competition for Pollination. Evolution; International Journal of Organic Evolution, 1985, 39, 418.	1.1	40
119	The Mechanism of Competition for Pollination between Two Forest Herbs. Ecology, 1985, 66, 554-563.	1.5	225
120	Pollination Effectiveness of Specialist and Generalist Visitors to a North Carolina Population of Claytonia Virginica. Ecology, 1981, 62, 1278-1287.	1.5	170