Maria A Zuluaga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2944455/publications.pdf

Version: 2024-02-01

516710 254184 2,225 61 16 43 citations g-index h-index papers 63 63 63 3034 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Vessel-CAPTCHA: An efficient learning framework for vessel annotation and segmentation. Medical Image Analysis, 2022, 75, 102263.	11.6	15
2	Using Out-of-Distribution Detection forÂModel Refinement inÂCardiac Image Segmentation. Lecture Notes in Computer Science, 2022, , 374-382.	1.3	1
3	Translating Emotions fromÂEEG toÂVisual Arts. Lecture Notes in Computer Science, 2022, , 243-258.	1.3	2
4	From Accuracy to Reliability and Robustness in Cardiac Magnetic Resonance Image Segmentation: A Review. Applied Sciences (Switzerland), 2022, 12, 3936.	2.5	11
5	Efficient Model Monitoring for Quality Control in Cardiac Image Segmentation. Lecture Notes in Computer Science, 2021, , 101-111.	1.3	5
6	From Univariate to Multivariate Time Series Anomaly Detection with Non-Local Information. Lecture Notes in Computer Science, 2021, , 186-194.	1.3	5
7	Autism spectrum disorder characterization in children by capturing localâ€regional brain changes in MRI. Medical Physics, 2020, 47, 119-131.	3.0	18
8	Substantially thinner internal granular layer and reduced molecular layer surface in the cerebellar cortex of the Tc1 mouse model of down syndrome – a comprehensive morphometric analysis with active staining contrast-enhanced MRI. Neurolmage, 2020, 223, 117271.	4.2	7
9	USAD., 2020,,.		273
10	Inference of Cerebrovascular Topology With Geodesic Minimum Spanning Trees. IEEE Transactions on Medical Imaging, 2019, 38, 225-239.	8.9	10
10		8.9	10
	Medical Imaging, 2019, 38, 225-239. DeeplGeoS: A Deep Interactive Geodesic Framework for Medical Image Segmentation. IEEE Transactions		
11	Medical Imaging, 2019, 38, 225-239. DeepIGeoS: A Deep Interactive Geodesic Framework for Medical Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41, 1559-1572. Micro-CT and histological investigation of the spatial pattern of feto-placental vascular density.	13.9	269
11 12	Medical Imaging, 2019, 38, 225-239. DeepIGeoS: A Deep Interactive Geodesic Framework for Medical Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41, 1559-1572. Micro-CT and histological investigation of the spatial pattern of feto-placental vascular density. Placenta, 2019, 88, 36-43. Interactive Medical Image Segmentation Using Deep Learning With Image-Specific Fine Tuning. IEEE	13.9	269 35
11 12 13	Medical Imaging, 2019, 38, 225-239. DeepIGeoS: A Deep Interactive Geodesic Framework for Medical Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41, 1559-1572. Micro-CT and histological investigation of the spatial pattern of feto-placental vascular density. Placenta, 2019, 88, 36-43. Interactive Medical Image Segmentation Using Deep Learning With Image-Specific Fine Tuning. IEEE Transactions on Medical Imaging, 2018, 37, 1562-1573. Benchmarking Anomaly Detection Algorithms in an Industrial Context: Dealing with Scarce Labels and	13.9	269 35 541
11 12 13	Medical Imaging, 2019, 38, 225-239. DeepIGeoS: A Deep Interactive Geodesic Framework for Medical Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41, 1559-1572. Micro-CT and histological investigation of the spatial pattern of feto-placental vascular density. Placenta, 2019, 88, 36-43. Interactive Medical Image Segmentation Using Deep Learning With Image-Specific Fine Tuning. IEEE Transactions on Medical Imaging, 2018, 37, 1562-1573. Benchmarking Anomaly Detection Algorithms in an Industrial Context: Dealing with Scarce Labels and Multiple Positive Types., 2018,,.	13.9 1.5 8.9	269 35 541
11 12 13 14	Medical Imaging, 2019, 38, 225-239. DeepIGeoS: A Deep Interactive Geodesic Framework for Medical Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41, 1559-1572. Micro-CT and histological investigation of the spatial pattern of feto-placental vascular density. Placenta, 2019, 88, 36-43. Interactive Medical Image Segmentation Using Deep Learning With Image-Specific Fine Tuning. IEEE Transactions on Medical Imaging, 2018, 37, 1562-1573. Benchmarking Anomaly Detection Algorithms in an Industrial Context: Dealing with Scarce Labels and Multiple Positive Types., 2018,, Elastic Registration of Geodesic Vascular Graphs. Lecture Notes in Computer Science, 2018,, 810-818. Detecting Clinically Meaningful Shape Clusters in Medical Image Data: Metrics Analysis for Hierarchical Clustering Applied to Healthy and Pathological Aortic Arches. IEEE Transactions on	13.9 1.5 8.9	269 35 541 1

#	Article	IF	CITATIONS
19	Automated multiple trajectory planning algorithm for the placement of stereo-electroencephalography (SEEG) electrodes in epilepsy treatment. International Journal of Computer Assisted Radiology and Surgery, 2017, 12, 123-136.	2.8	37
20	Standardized unfold mapping: a technique to permit left atrial regional data display and analysis. Journal of Interventional Cardiac Electrophysiology, 2017, 50, 125-131.	1.3	17
21	Investigating Cardiac Motion Patterns Using Synthetic High-Resolution 3D Cardiovascular Magnetic Resonance Images and Statistical Shape Analysis. Frontiers in Pediatrics, 2017, 5, 34.	1.9	9
22	VTrails: Inferring Vessels with Geodesic Connectivity Trees. Lecture Notes in Computer Science, 2017, , 672-684.	1.3	7
23	Strengths and Pitfalls of Whole-Heart Atlas-Based Segmentation in Congenital Heart Disease Patients. Lecture Notes in Computer Science, 2017, , 139-146.	1.3	2
24	Automatic segmentation of right ventricle in cardiac cine MR images using a saliency analysis. Medical Physics, 2016, 43, 6270-6281.	3.0	13
25	Automatic segmentation of 4D cardiac MR images for extraction of ventricular chambers using a spatio-temporal approach. Proceedings of SPIE, 2016, , .	0.8	3
26	Slic-Seg: A minimally interactive segmentation of the placenta from sparse and motion-corrupted fetal MRI in multiple views. Medical Image Analysis, 2016, 34, 137-147.	11.6	56
27	Papillary Muscle Segmentation from a Multi-atlas Database: A Feasibility Study. Lecture Notes in Computer Science, 2016, , 80-89.	1.3	1
28	Efficient Anatomy Driven Automated Multiple Trajectory Planning for Intracranial Electrode Implantation. Lecture Notes in Computer Science, 2016, , 542-550.	1.3	2
29	Dynamically Balanced Online Random Forests for Interactive Scribble-Based Segmentation. Lecture Notes in Computer Science, 2016, , 352-360.	1.3	5
30	Differential hippocampal shapes in posterior cortical atrophy patients: A comparison with control and typical <scp>AD</scp> subjects. Human Brain Mapping, 2015, 36, 5123-5136.	3.6	19
31	Multi-atlas synthesis for computer assisted diagnosis: Application to cardiovascular diseases. , 2015, , .		2
32	Voronoi-based analysis of bone cell network from synchrotron radiation micro-CT images. , 2015, , .		0
33	Automatic right ventricle (RV) segmentation by propagating a basal spatio-temporal characterization. , $2015, \ldots$		0
34	Bolstering Heuristics for Statistical Validation of Prediction Algorithms. , 2015, , .		1
35	Benchmark for Algorithms Segmenting the Left Atrium From 3D CT and MRI Datasets. IEEE Transactions on Medical Imaging, 2015, 34, 1460-1473.	8.9	140
36	Stability, structure and scale: improvements in multi-modal vessel extraction for SEEG trajectory planning. International Journal of Computer Assisted Radiology and Surgery, 2015, 10, 1227-1237.	2.8	21

#	Article	lF	CITATIONS
37	Voxelwise atlas rating for computer assisted diagnosis: Application to congenital heart diseases of the great arteries. Medical Image Analysis, 2015, 26, 185-194.	11.6	14
38	Right ventricle segmentation from cardiac MRI: A collation study. Medical Image Analysis, 2015, 19, 187-202.	11.6	189
39	Slic-Seg: Slice-by-Slice Segmentation Propagation of the Placenta in Fetal MRI Using One-Plane Scribbles and Online Learning. Lecture Notes in Computer Science, 2015, , 29-37.	1.3	15
40	Grey Matter Sublayer Thickness Estimation in the Mouse Cerebellum. Lecture Notes in Computer Science, 2015, , 644-651.	1.3	0
41	A Computer Assisted Planning System for the Placement of sEEG Electrodes in the Treatment of Epilepsy. Lecture Notes in Computer Science, 2014, , 118-127.	1.3	23
42	QUANTIFICATION OF THE 3D MORPHOLOGY OF THE BONE CELL NETWORK FROM SYNCHROTRON MICRO-CT IMAGES. Image Analysis and Stereology, 2014, 33, 157.	0.9	15
43	Bone canalicular network segmentation in 3D nano-CT images through geodesic voting and image tessellation. Physics in Medicine and Biology, 2014, 59, 2155-2171.	3.0	15
44	Multi-atlas based pathological stratification of D-TGA congenital heart disease. , 2014, , .		1
45	Feature selection based on empirical-risk function to detect lesions in vascular computed tomography. Irbm, 2014, 35, 244-254.	5.6	3
46	The Empirical Variance Estimator for Computer Aided Diagnosis: Lessons for Algorithm Validation. Lecture Notes in Computer Science, 2014, 17, 236-243.	1.3	3
47	SEEG Trajectory Planning: Combining Stability, Structure and Scale in Vessel Extraction. Lecture Notes in Computer Science, 2014, 17, 651-658.	1.3	7
48	A new quantitative approach for estimating bone cell connections from nano-CT images. , 2013, 2013, 3694-7.		5
49	Multi-atlas Propagation Whole Heart Segmentation from MRI and CTA Using a Local Normalised Correlation Coefficient Criterion. Lecture Notes in Computer Science, 2013, , 174-181.	1.3	54
50	3D X-ray CT imaging of the bone Lacuno-Canalicular Network. , 2012, , .		2
51	Synchrotron radiation CT from the micro to nanoscale for the investigation of bone tissue. Proceedings of SPIE, 2012, , .	0.8	4
52	A Fast Lesion Registration to Assist Coronary Heart Disease Diagnosis in CTA Images. Lecture Notes in Computer Science, 2012, , 710-717.	1.3	2
53	Automatic detection of abnormal vascular cross-sections based on density level detection and support vector machines. International Journal of Computer Assisted Radiology and Surgery, 2011, 6, 163-174.	2.8	30
54	Evaluation framework for carotid bifurcation lumen segmentation and stenosis grading. Medical Image Analysis, 2011, 15, 477-488.	11.6	70

#	Article	IF	CITATIONS
55	Learning from Only Positive and Unlabeled Data to Detect Lesions in Vascular CT Images. Lecture Notes in Computer Science, 2011, 14, 9-16.	1.3	16
56	Feature Selection for SVM-Based Vascular Anomaly Detection. Lecture Notes in Computer Science, 2011, , 141-152.	1.3	5
57	Can the Coronary Artery Centerline Extraction in Computed Tomography Images Be Improved by Use of a Partial Volume Model?. Lecture Notes in Computer Science, 2010, , 385-392.	1.3	1
58	Automated voxel-based 3D cortical thickness measurement in a combined Lagrangian–Eulerian PDE approach using partial volume maps. Medical Image Analysis, 2009, 13, 730-743.	11.6	88
59	Improved cortical thickness measurement from MR images using partial volume estimation. , 2008, , .		3
60	Cortical thickness measurement from magnetic resonance images using partial volume estimation. Proceedings of SPIE, 2008, , .	0.8	5
61	Fuzzy classification of brain MRI using a priori knowledge: weighted fuzzy C-means. , 2007, , .		11