Joseph T Opferman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2944358/publications.pdf

Version: 2024-02-01

83 papers 10,413 citations

43 h-index 81 g-index

86 all docs 86 docs citations

86 times ranked 15259 citing authors

#	Article	IF	CITATIONS
1	BAX and BAK Regulation of Endoplasmic Reticulum Ca2+: A Control Point for Apoptosis. Science, 2003, 300, 135-139.	12.6	1,322
2	NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19500-19505.	7.1	768
3	Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature, 2003, 426, 671-676.	27.8	708
4	Obligate Role of Anti-Apoptotic MCL-1 in the Survival of Hematopoietic Stem Cells. Science, 2005, 307, 1101-1104.	12.6	510
5	Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell, 2006, 10, 331-342.	16.8	475
6	Apoptosis in the development and maintenance of the immune system. Nature Immunology, 2003, 4, 410-415.	14.5	438
7	Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 105-110.	7.1	399
8	Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusionÂto respiration. Nature Cell Biology, 2012, 14, 575-583.	10.3	347
9	Linear Differentiation of Cytotoxic Effectors into Memory T Lymphocytes. Science, 1999, 283, 1745-1748.	12.6	339
10	GM1-Ganglioside Accumulation at the Mitochondria-Associated ER Membranes Links ER Stress to Ca2+-Dependent Mitochondrial Apoptosis. Molecular Cell, 2009, 36, 500-511.	9.7	257
11	Anti-apoptotic BCL-2 family members in development. Cell Death and Differentiation, 2018, 25, 37-45.	11.2	243
12	LC3-Associated Phagocytosis in Myeloid Cells Promotes Tumor Immune Tolerance. Cell, 2018, 175, 429-441.e16.	28.9	242
13	Hax1-mediated processing of HtrA2 by Parl allows survival of lymphocytes and neurons. Nature, 2008, 452, 98-102.	27.8	219
14	Deletion of MCL-1 causes lethal cardiac failure and mitochondrial dysfunction. Genes and Development, 2013, 27, 1351-1364.	5.9	203
15	Delving deeper: MCL-1's contributions to normal and cancer biology. Trends in Cell Biology, 2013, 23, 22-29.	7.9	196
16	Multiple signaling pathways promote B lymphocyte stimulator–dependent B-cell growth and survival. Blood, 2008, 111, 750-760.	1.4	178
17	Long-term T cell memory requires the surface expression of self-peptide/major histocompatibility complex molecules. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 3065-3070.	7.1	170
18	Mcl-1 Is a Key Regulator of Apoptosis during CNS Development and after DNA Damage. Journal of Neuroscience, 2008, 28, 6068-6078.	3.6	166

#	Article	IF	Citations
19	MCL-1 is a stress sensor that regulates autophagy in a developmentally regulated manner. EMBO Journal, 2011, 30, 395-407.	7.8	159
20	Venetoclax and Navitoclax in Combination with Chemotherapy in Patients with Relapsed or Refractory Acute Lymphoblastic Leukemia and Lymphoblastic Lymphoma. Cancer Discovery, 2021, 11, 1440-1453.	9.4	137
21	Knockout of myeloid cell leukemia-1 induces liver damage and increases apoptosis susceptibility of murine hepatocytes. Hepatology, 2009, 49, 627-636.	7.3	130
22	A Competitive Stapled Peptide Screen Identifies a Selective Small Molecule that Overcomes MCL-1-Dependent Leukemia Cell Survival. Chemistry and Biology, 2012, 19, 1175-1186.	6.0	128
23	Myeloid-Derived Suppressor Activity Is Mediated by Monocytic Lineages Maintained by Continuous Inhibition of Extrinsic and Intrinsic Death Pathways. Immunity, 2014, 41, 947-959.	14.3	121
24	A pivotal role for Mcl-1 in Bortezomib-induced apoptosis. Oncogene, 2008, 27, 721-731.	5. 9	114
25	Proapoptotic BAX and BAK control multiple initiator caspases. EMBO Reports, 2005, 6, 379-385.	4.5	113
26	Regulation of endoplasmic reticulum Ca2+ dynamics by proapoptotic BCL-2 family members. Biochemical Pharmacology, 2003, 66, 1335-1340.	4.4	111
27	Selective roles for antiapoptotic MCL-1 during granulocyte development and macrophage effector function. Blood, 2009, 113, 2805-2815.	1.4	108
28	Ubiquitin-Independent Degradation of Antiapoptotic MCL-1. Molecular and Cellular Biology, 2010, 30, 3099-3110.	2.3	108
29	Hepatocyte-specific deletion of the antiapoptotic protein myeloid cell leukemia-1 triggers proliferation and hepatocarcinogenesis in mice. Hepatology, 2010, 51, 1226-1236.	7.3	106
30	Attacking cancer's Achilles heel: antagonism of antiâ€apoptotic <scp>BCL</scp> â€2 family members. FEBS Journal, 2016, 283, 2661-2675.	4.7	104
31	Apoptosis in the development of the immune system. Cell Death and Differentiation, 2008, 15, 234-242.	11.2	102
32	Mcl1 haploinsufficiency protects mice from Myc-induced acute myeloid leukemia. Journal of Clinical Investigation, 2010, 120, 2109-2118.	8.2	101
33	Venetoclax in combination with cytarabine with or without idarubicin in children with relapsed or refractory acute myeloid leukaemia: a phase 1, dose-escalation study. Lancet Oncology, The, 2020, 21, 551-560.	10.7	92
34	Specific Recognition of Thymic Self-Peptides Induces the Positive Selection of Cytotoxic T Lymphocytes. Immunity, 1997, 7, 221-231.	14.3	89
35	Unraveling MCL-1 degradation. Cell Death and Differentiation, 2006, 13, 1260-1262.	11.2	82
36	Requirement for antiapoptotic MCL-1 in the survival of BCR-ABL B-lineage acute lymphoblastic leukemia. Blood, 2013, 122, 1587-1598.	1.4	82

#	Article	IF	Citations
37	MCL-1–dependent leukemia cells are more sensitive to chemotherapy than BCL-2–dependent counterparts. Journal of Cell Biology, 2009, 187, 429-442.	5.2	81
38	Serine protease inhibitor 2A is a protective factor for memory T cell development. Nature Immunology, 2004, 5, 919-926.	14.5	79
39	A Role for the Granzyme B Inhibitor Serine Protease Inhibitor 6 in CD8+Memory Cell Homeostasis. Journal of Immunology, 2004, 173, 3801-3809.	0.8	61
40	BH3 profiling discriminates on-target small molecule BH3 mimetics from putative mimetics. Cell Death and Differentiation, 2020, 27, 999-1007.	11.2	54
41	Mito-protective autophagy is impaired in erythroid cells of aged mtDNA-mutator mice. Blood, 2015, 125, 162-174.	1.4	53
42	Discovery and biological characterization of potent myeloid cell leukemiaâ€1 inhibitors. FEBS Letters, 2017, 591, 240-251.	2.8	49
43	Life and death during hematopoietic differentiation. Current Opinion in Immunology, 2007, 19, 497-502.	5 . 5	46
44	Dynamic Regulation of Long-Chain Fatty Acid Oxidation by a Noncanonical Interaction between the MCL-1 BH3 Helix and VLCAD. Molecular Cell, 2018, 69, 729-743.e7.	9.7	45
45	Mcl-1 antagonizes Bax/Bak to promote effector CD4+ and CD8+ T-cell responses. Cell Death and Differentiation, 2013, 20, 998-1007.	11.2	44
46	Discovery of Potent Myeloid Cell Leukemia-1 (Mcl-1) Inhibitors That Demonstrate in Vivo Activity in Mouse Xenograft Models of Human Cancer. Journal of Medicinal Chemistry, 2019, 62, 3971-3988.	6.4	44
47	Expression of apoptosis inhibitor protein Mcl1 linked to neuroprotection in CNS neurons. Cell Death and Differentiation, 2004, 11, 1223-1233.	11.2	43
48	Functional Divergence in the Role of N-Linked Glycosylation in Smoothened Signaling. PLoS Genetics, 2015, 11, e1005473.	3.5	40
49	Genetically defining the mechanism of Puma- and Bim-induced apoptosis. Cell Death and Differentiation, 2012, 19, 642-649.	11.2	38
50	Extra-mitochondrial prosurvival BCL-2 proteins regulate gene transcription by inhibiting the SUFUÂtumour suppressor. Nature Cell Biology, 2017, 19, 1226-1236.	10.3	38
51	Antagonism between MCL-1 and PUMA governs stem/progenitor cell survival during hematopoietic recovery from stress. Blood, 2015, 125, 3273-3280.	1.4	36
52	Mcl-1 regulates the survival of adult neural precursor cells. Molecular and Cellular Neurosciences, 2012, 49, 439-447.	2.2	35
53	Mcl-1 and Bcl-xL are essential for survival of the developing nervous system. Cell Death and Differentiation, 2019, 26, 1501-1515.	11.2	35
54	Contracting the †mus cells†does down†sizing suit us for diving into the memory pool?. Immunological Reviews, 2010, 236, 54-67.	6.0	31

#	Article	IF	CITATIONS
55	Defining specificity and on-target activity of BH3-mimetics using engineered B-ALL cell lines. Oncotarget, 2016, 7, 11500-11511.	1.8	30
56	Targeting Mcl-1 for multiple myeloma (MM) therapy: Drug-induced generation of Mcl-1 fragment Mcl-1128–350 triggers MM cell death via c-Jun upregulation. Cancer Letters, 2014, 343, 286-294.	7.2	29
57	Mcl-1 is a key regulator of the ovarian reserve. Cell Death and Disease, 2015, 6, e1755-e1755.	6.3	28
58	Endocytosis and degradation of bovine apo- and holo-lactoferrin by isolated rat hepatocytes are mediated by recycling calcium-dependent binding sites. Biochemistry, 1993, 32, 13749-13760.	2.5	27
59	Mcl1 regulates the terminal mitosis of neural precursor cells in the mammalian brain through p27Kip1. Development (Cambridge), 2013, 140, 3118-3127.	2.5	26
60	Mcl-1 confers protection of Her2-positive breast cancer cells to hypoxia: therapeutic implications. Breast Cancer Research, 2016, 18, 26.	5.0	25
61	Suicide induced by cytolytic activity controls the differentiation of memory CD8+ T lymphocytes. International Immunology, 2001, 13, 411-419.	4.0	24
62	Translational research? Ribosome integrity and a new p53 tumor suppressor checkpoint. Cell Death and Differentiation, 2006, 13, 898-901.	11.2	24
63	Modulation of Navitoclax Sensitivity by Dihydroartemisinin-Mediated MCL-1 Repression in BCR-ABL+B-Lineage Acute Lymphoblastic Leukemia. Clinical Cancer Research, 2017, 23, 7558-7568.	7.0	23
64	Affinity of thymic self-peptides for the TCR determines the selection of CD8+ T lymphocytes in the thymus. International Immunology, 2000, 12, 1353-1363.	4.0	19
65	A critical role for NF-κB transcription factors in the development of CD8+ memory-phenotype T cells. Immunology Letters, 2003, 85, 297-300.	2.5	19
66	Requirement for antiapoptotic MCL-1 during early erythropoiesis. Blood, 2021, 137, 1945-1958.	1.4	17
67	Prolyl Hydroxylase 3 Attenuates MCL-1–Mediated ATP Production to Suppress the Metastatic Potential of Colorectal Cancer Cells. Cancer Research, 2016, 76, 2219-2230.	0.9	16
68	Rationally derived drug combinations with the novel Mcl-1 inhibitor EU-5346 in breast cancer. Breast Cancer Research and Treatment, 2019, 173, 585-596.	2.5	14
69	DUB-le Trouble for Cell Survival. Cancer Cell, 2010, 17, 117-119.	16.8	10
70	Memory T lymphocytes. Cellular and Molecular Life Sciences, 1999, 56, 69-77.	5.4	9
71	Small mitochondrial Arf (smArf) protein corrects p53-independent developmental defects of <i>Arf</i> tumor suppressor-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7420-7425.	7.1	9
72	Apoptosome activation, an important molecular instigator in 6-mercaptopurine induced Leydig cell death. Scientific Reports, 2015, 5, 16488.	3.3	8

#	Article	IF	CITATIONS
73	The Heme-Regulated Inhibitor Pathway Modulates Susceptibility of Poor Prognosis B-Lineage Acute Leukemia to BH3-Mimetics. Molecular Cancer Research, 2021, 19, 636-650.	3.4	8
74	Identification of substituted 5-membered heterocyclic compounds as potential anti-leukemic agents. European Journal of Medicinal Chemistry, 2019, 164, 391-398.	5.5	7
75	Studies of Jatrogossone A as a Reactive Oxygen Species Inducer in Cancer Cellular Models. Journal of Natural Products, 2019, 82, 1301-1311.	3.0	5
76	What Keeps a Resting T Cell Alive?. Cold Spring Harbor Symposia on Quantitative Biology, 1999, 64, 383-388.	1.1	5
77	Male sterility in Mcl-1-flox mice is not due to enhanced Mcl1 protein stability. Cell Death and Disease, 2016, 7, e2490-e2490.	6.3	3
78	Safety and activity of venetoclax in combination with high-dose cytarabine in children with relapsed or refractory acute myeloid leukemia Journal of Clinical Oncology, 2019, 37, 10004-10004.	1.6	3
79	The Role of Mcl-1 in Embryonic Neural Precursor Cell Apoptosis. Frontiers in Cell and Developmental Biology, 2021, 9, 659531.	3.7	2
80	Conserved Transcriptional Deregulation Underlies GFI1 and ELANE Mutant Neutropenia. Blood, 2011, 118, 13-13.	1.4	1
81	Activity of venetoclax against relapsed acute undifferentiated leukemia. Cancer, 2021, 127, 2608-2611.	4.1	О
82	MCL-1–dependent leukemia cells are more sensitive to chemotherapy than BCL-2–dependent counterparts. Journal of Experimental Medicine, 2009, 206, i27-i27.	8.5	0
83	Targeting Mcl-1 for Multiple Myeloma (MM) Therapy: Drug-Induced Generation of Mcl-1 Fragment Mcl-1128–350 Triggers MM Cell Death Via c- Jun Upregulation. Blood, 2012, 120, 3959-3959.	1.4	O