Jianguo Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2944322/publications.pdf Version: 2024-02-01

	430754	414303
1,714	18	32
citations	h-index	g-index
32	32	1440
docs citations	times ranked	citing authors
		1,71418citationsh-index3232

#	Article	IF	CITATIONS
1	Molecularly engineered CMC-caged PNIPAM for broadband light management in energy-saving window. Carbohydrate Polymers, 2022, 281, 119056.	5.1	13
2	Sustainable, superfast deconstruction of natural cellulosic aggregates toward intrinsically green, multifunctional gel. Chemical Engineering Journal, 2022, 435, 134856.	6.6	8
3	Sustainable high-strength macrofibres extracted from natural bamboo. Nature Sustainability, 2022, 5, 235-244.	11.5	113
4	Engineered Janus cellulose membrane with the asymmetric-pore structure for the superhigh-water flux desalination. Carbohydrate Polymers, 2022, 291, 119601.	5.1	17
5	A bio-inspired, hierarchically porous structure with a decoupled fluidic transportation and evaporative pathway toward high-performance evaporation. Journal of Materials Chemistry A, 2021, 9, 9745-9752.	5.2	19
6	In Situ Lignin Modification toward Photonic Wood. Advanced Materials, 2021, 33, e2001588.	11.1	86
7	Carbonâ€5upported Highâ€Entropy Oxide Nanoparticles as Stable Electrocatalysts for Oxygen Reduction Reactions. Advanced Functional Materials, 2021, 31, 2010561.	7.8	86
8	A strong, biodegradable and recyclable lignocellulosic bioplastic. Nature Sustainability, 2021, 4, 627-635.	11.5	291
9	Transparent, smooth, and sustainable cellulose-derived conductive film applied for the flexible electronic device. Carbohydrate Polymers, 2021, 260, 117820.	5.1	16
10	In Situ Wood Delignification toward Sustainable Applications. Accounts of Materials Research, 2021, 2, 606-620.	5.9	71
11	Wood Ionic Cable. Small, 2021, 17, e2008200.	5.2	10
12	Strong, robust cellulose composite film for efficient light management in energy efficient building. Chemical Engineering Journal, 2021, 425, 131469.	6.6	30
13	Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material. Science, 2021, 374, 465-471.	6.0	137
14	From Straw to Device Interface: Carboxymethyl elluloseâ€Based Modified Interlayer for Enhanced Power Conversion Efficiency of Organic Solar Cells. Advanced Science, 2020, 7, 1902269.	5.6	34
15	Conductive Regenerated Cellulose Film and Its Electronic Devices – A Review. Carbohydrate Polymers, 2020, 250, 116969.	5.1	35
16	Scalable aesthetic transparent wood for energy efficient buildings. Nature Communications, 2020, 11, 3836.	5.8	180
17	Water molecule "spinning cutter―controllably improving the performance of cellulosic fibers. Cellulose, 2020, 27, 7297-7306.	2.4	7
18	Organic solar cells based on cellulose nanopaper from agroforestry residues with an efficiency of over 16% and effectively wide-angle light capturing. Journal of Materials Chemistry A, 2020, 8, 5442-5448.	5.2	44

Jianguo Li

#	Article	IF	CITATIONS
19	Transparent and conductive cellulose film by controllably growing aluminum doped zinc oxide on regenerated cellulose film. Cellulose, 2020, 27, 4847-4855.	2.4	16
20	Rapid Processing of Whole Bamboo with Exposed, Aligned Nanofibrils toward a High-Performance Structural Material. ACS Nano, 2020, 14, 5194-5202.	7.3	105
21	Flexible and conductive cellulose substrate by layered growth of silver nanowires and indium-doped tin oxide. BioResources, 2020, 15, 4699-4710.	0.5	4
22	Urea/NaOH system for enhancing the removal of hemicellulose from cellulosic fibers. Cellulose, 2019, 26, 6393-6400.	2.4	18
23	Zwitterions for Organic/Perovskite Solar Cells, Lightâ€Emitting Devices, and Lithium Ion Batteries: Recent Progress and Perspectives. Advanced Energy Materials, 2019, 9, 1803354.	10.2	68
24	Enhancing the Fock reactivity of dissolving pulp by the combined prerefining and poly dimethyl diallyl ammonium chloride-assisted cellulase treatment. Bioresource Technology, 2018, 260, 135-140.	4.8	14
25	Cellulase pretreatment for enhancing cold caustic extraction-based separation of hemicelluloses and cellulose from cellulosic fibers. Bioresource Technology, 2018, 251, 1-6.	4.8	25
26	Integrated microwave and alkaline treatment for the separation between hemicelluloses and cellulose from cellulosic fibers. Bioresource Technology, 2018, 247, 859-863.	4.8	55
27	A new approach to improve dissolving pulp properties: spraying cellulase on rewetted pulp at a high fiber consistency. Cellulose, 2018, 25, 6989-7002.	2.4	11
28	Conductive regenerated cellulose film as counter electrode for efficient dye-sensitized solar cells. Cellulose, 2018, 25, 5113-5122.	2.4	37
29	Methods to increase the reactivity of dissolving pulp in the viscose rayon production process: a review. Cellulose, 2018, 25, 3733-3753.	2.4	46
30	Regenerated cellulose by the Lyocell process, a brief review of the process and properties. BioResources, 2018, 13, 4577-4592.	0.5	94
31	Kinetics and mechanism of hemicelluloses removal from cellulosic fibers during the cold caustic extraction process. Bioresource Technology, 2017, 234, 61-66.	4.8	18