Danwei Huangfu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2943445/publications.pdf

Version: 2024-02-01

43 8,774 27 41 g-index

48 48 48 48 10887

48 48 48 10887 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Abnormal exocrine–endocrine cell cross-talk promotes β-cell dysfunction and loss in MODY8. Nature Metabolism, 2022, 4, 76-89.	11.9	25
2	Epigenome rewiring in human pluripotent stem cells. Trends in Cell Biology, 2022, 32, 259-271.	7.9	4
3	CRISPR screening uncovers a central requirement for HHEX in pancreatic lineage commitment and plasticity restriction. Nature Cell Biology, 2022, 24, 1064-1076.	10.3	15
4	Kathryn Anderson (1952–2020). Developmental Cell, 2021, 56, 257-259.	7.0	0
5	Kathryn Anderson (1952–2020). Cell, 2021, 184, 1123-1126.	28.9	O
6	QSER1 protects DNA methylation valleys from de novo methylation. Science, 2021, 372, .	12.6	69
7	Generation of human embryonic stem cell models to exploit the EWSR1-CREB fusion promiscuity as a common pathway of transformation in human tumors. Oncogene, 2021, 40, 5095-5104.	5.9	7
8	209.7: An Inducible Genome Engineering Approach for Preventing Immune Rejection of hESC-derived Beta Cells. Transplantation, 2021, 105, S16-S16.	1.0	0
9	Stage-specific regulation of DNA methylation by TET enzymes during human cardiac differentiation. Cell Reports, 2021, 37, 110095.	6.4	10
10	Decoding pluripotency: Genetic screens to interrogate the acquisition, maintenance, and exit of pluripotency. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2020, 12, e1464.	6.6	11
11	Enhancer Predictions and Genome-Wide Regulatory Circuits. Annual Review of Genomics and Human Genetics, 2020, 21, 37-54.	6.2	18
12	Glutamine independence is a selectable feature of pluripotent stem cells. Nature Metabolism, 2019, 1, 676-687.	11.9	46
13	FOXA2 Is Required for Enhancer Priming during Pancreatic Differentiation. Cell Reports, 2019, 28, 382-393.e7.	6.4	111
14	Genome-scale screens identify JNK–JUN signaling as a barrier for pluripotency exit and endoderm differentiation. Nature Genetics, 2019, 51, 999-1010.	21.4	90
15	TET proteins safeguard bivalent promoters from de novo methylation in human embryonic stem cells. Nature Genetics, 2018, 50, 83-95.	21.4	156
16	Report of the Key Opinion Leaders Meeting on Stem Cell-derived Beta Cells. Transplantation, 2018, 102, 1223-1229.	1.0	72
17	Discovery of a drug candidate for GLIS3-associated diabetes. Nature Communications, 2018, 9, 2681.	12.8	48
18	DICER1 Is Essential for Self-Renewal of Human Embryonic Stem Cells. Stem Cell Reports, 2018, 11, 616-625.	4.8	24

#	Article	IF	CITATIONS
19	Decoding the noncoding genome via large-scale CRISPR screens. Current Opinion in Genetics and Development, 2018, 52, 70-76.	3.3	20
20	Genome Editing in hPSCs Reveals GATA6 Haploinsufficiency and a Genetic Interaction with GATA4 in Human Pancreatic Development. Cell Stem Cell, 2017, 20, 675-688.e6.	11.1	128
21	CRISPR/Cas9-Based Engineering of the Epigenome. Cell Stem Cell, 2017, 21, 431-447.	11.1	215
22	Genome Editing and Directed Differentiation of hPSCs for Interrogating Lineage Determinants in Human Pancreatic Development. Journal of Visualized Experiments, $2017, \ldots$	0.3	3
23	CRISPR/Cas-Mediated Knockin in Human Pluripotent Stem Cells. Methods in Molecular Biology, 2017, 1513, 119-140.	0.9	14
24	CRISPR/Cas9-Mediated Mutagenesis of Human Pluripotent Stem Cells in Defined Xeno-Free E8 Medium. Methods in Molecular Biology, 2017, 1498, 57-78.	0.9	5
25	The p53 Family Coordinates Wnt and Nodal Inputs in Mesendodermal Differentiation of Embryonic Stem Cells. Cell Stem Cell, 2017, 20, 70-86.	11.1	121
26	Genome Editing of Lineage Determinants in Human Pluripotent Stem Cells Reveals Mechanisms of Pancreatic Development and Diabetes. Cell Stem Cell, 2016, 18, 755-768.	11.1	147
27	Mechanisms underlying the formation of induced pluripotent stem cells. Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, 39-65.	5.9	18
28	A CRISPR/Cas-Mediated Selection-free Knockin Strategy in Human Embryonic Stem Cells. Stem Cell Reports, 2015, 4, 1103-1111.	4.8	85
29	Functional analysis of a chromosomal deletion associated with myelodysplastic syndromes using isogenic human induced pluripotent stem cells. Nature Biotechnology, 2015, 33, 646-655.	17.5	130
30	The iCRISPR Platform for Rapid Genome Editing in Human Pluripotent Stem Cells. Methods in Enzymology, 2014, 546, 215-250.	1.0	59
31	An iCRISPR Platform for Rapid, Multiplexable, and Inducible Genome Editing in Human Pluripotent Stem Cells. Cell Stem Cell, 2014, 15, 215-226.	11.1	411
32	Human pluripotent stem cells: an emerging model in developmental biology. Development (Cambridge), 2013, 140, 705-717.	2.5	155
33	Homologous Recombination DNA Repair Genes Play a Critical Role in Reprogramming to a Pluripotent State. Cell Reports, 2013, 3, 651-660.	6.4	74
34	Glucose and aging control the quiescence period that follows pancreatic beta cell replication. Development (Cambridge), 2010, 137, 3205-3213.	2.5	67
35	A Small-Molecule Inhibitor of Tgf- \hat{l}^2 Signaling Replaces Sox2 in Reprogramming by Inducing Nanog. Cell Stem Cell, 2009, 5, 491-503.	11.1	741
36	Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature Biotechnology, 2008, 26, 1269-1275.	17.5	1,249

#	Article	lF	CITATIONS
37	Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nature Biotechnology, 2008, 26, 795-797.	17.5	1,491
38	All \hat{I}^2 Cells Contribute Equally to Islet Growth and Maintenance. PLoS Biology, 2007, 5, e163.	5.6	191
39	Signaling from Smo to Ci/Gli: conservation and divergence of Hedgehog pathways from Drosophila to vertebrates. Development (Cambridge), 2006, 133, 3-14.	2.5	431
40	Cilia and Hedgehog responsiveness in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11325-11330.	7.1	745
41	Analysis of mouse embryonic patterning and morphogenesis by forward genetics. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5913-5919.	7.1	130
42	Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature, 2003, 426, 83-87.	27.8	1,260
43	Mouse Dispatched homolog1 Is Required for Long-Range, but Not Juxtacrine, Hh Signaling. Current Biology, 2002, 12, 1628-1632.	3.9	170