Eugene Berezikov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2943285/publications.pdf

Version: 2024-02-01

38660 14,863 111 50 citations papers

106 h-index g-index

27345

120 120 docs citations all docs

120 times ranked

18891 citing authors

#	Article	IF	CITATIONS
1	A panâ€metazoan concept for adult stem cells: the wobbling <scp>Penrose</scp> landscape. Biological Reviews, 2022, 97, 299-325.	4.7	25
2	Random Integration Transgenesis in a Free-Living Regenerative Flatworm Macrostomum lignano. Methods in Molecular Biology, 2022, 2450, 493-508.	0.4	О
3	<i>Macrostomum lignano</i> as a model to study the genetics and genomics of parasitic flatworms. Vavilovskii Zhurnal Genetiki I Selektsii, 2021, 25, 108-116.	0.4	o
4	Computational analysis of spliced leader trans-splicing in the regenerative flatworm & lt;i>Macrostomum lignano reveals its prevalence in conserved and stem cell related genes. Vavilovskii Zhurnal Genetiki I Selektsii, 2021, 25, 101-107.	0.4	2
5	Proof of principle for piggyBac-mediated transgenesis in the flatworm Macrostomum lignano. Genetics, $2021,218,$	1.2	2
6	TIM29 is required for enhanced stem cell activity during regeneration in the flatworm Macrostomum lignano. Scientific Reports, 2021, 11, 1166.	1.6	3
7	Selenoprotein DIO2 Is a Regulator of Mitochondrial Function, Morphology and UPRmt in Human Cardiomyocytes. International Journal of Molecular Sciences, 2021, 22, 11906.	1.8	13
8	Multispecies RNA tomography reveals regulators of hematopoietic stem cell birth in the embryonic aorta. Blood, 2020, 136, 831-844.	0.6	28
9	The free-living flatworm Macrostomum lignano. EvoDevo, 2020, 11, 5.	1.3	33
10	Electrical stimulation shifts healing/scarring towards regeneration in a rat limb amputation model. Scientific Reports, 2019, 9, 11433.	1.6	36
11	Sex allocation plasticity on a transcriptome scale: Socially sensitive gene expression in a simultaneous hermaphrodite. Molecular Ecology, 2019, 28, 2321-2341.	2.0	30
12	Influence of temperature on development, reproduction and regeneration in the flatworm model organism, Macrostomum lignano. Zoological Letters, 2019, 5, 7.	0.7	20
13	Modeling Human Cardiac Hypertrophy in Stem Cell-Derived Cardiomyocytes. Stem Cell Reports, 2018, 10, 794-807.	2.3	49
14	Resilience to aging in the regenerationâ€capable flatworm <i>Macrostomum lignano</i> . Aging Cell, 2018, 17, e12739.	3.0	22
15	A novel flatworm-specific gene implicated in reproduction in Macrostomum lignano. Scientific Reports, 2018, 8, 3192.	1.6	24
16	Organ specific gene expression in the regenerating tail of Macrostomum lignano. Developmental Biology, 2018, 433, 448-460.	0.9	28
17	Spatial Transcriptomics of C.Âelegans Males and Hermaphrodites Identifies Sex-Specific Differences in Gene Expression Patterns. Developmental Cell, 2018, 47, 801-813.e6.	3.1	55
18	The regenerative flatworm Macrostomum lignano, a model organism with high experimental potential. International Journal of Developmental Biology, 2018, 62, 551-558.	0.3	15

#	Article	lF	CITATIONS
19	Towards the identification of ancestrally shared regenerative mechanisms across the Metazoa: A Transcriptomic case study in the Demosponge Halisarca caerulea. Marine Genomics, 2018, 37, 135-147.	0.4	31
20	Low circulating microRNA levels in heart failure patients are associated with atherosclerotic disease and cardiovascular-related rehospitalizations. Clinical Research in Cardiology, 2017, 106, 598-609.	1.5	66
21	Efficient transgenesis and annotated genome sequence of the regenerative flatworm model Macrostomum lignano. Nature Communications, 2017, 8, 2120.	5.8	60
22	Accumulation of 5-oxoproline in myocardial dysfunction and the protective effects of OPLAH. Science Translational Medicine, 2017, 9, .	5.8	36
23	Chromosome Evolution in the Free-Living Flatworms: First Evidence of Intrachromosomal Rearrangements in Karyotype Evolution of Macrostomum lignano (Platyhelminthes, Macrostomida). Genes, 2017, 8, 298.	1.0	21
24	Rodent heart failure models do not reflect the human circulating microRNA signature in heart failure. PLoS ONE, 2017, 12, e0177242.	1.1	25
25	Evidence for Karyotype Polymorphism in the Free-Living Flatworm, Macrostomum lignano, a Model Organism for Evolutionary and Developmental Biology. PLoS ONE, 2016, 11, e0164915.	1.1	46
26	Gene silencing pathways found in the green alga Volvox carteri reveal insights into evolution and origins of small RNA systems in plants. BMC Genomics, 2016, 17, 853.	1.2	15
27	Signature of circulating <scp>microRNAs</scp> in patients with acute heart failure. European Journal of Heart Failure, 2016, 18, 414-423.	2.9	162
28	MicroRNA mir-34 provides robustness to environmental stress response via the DAF-16 network in C. elegans. Scientific Reports, 2016, 6, 36766.	1.6	44
29	Use of biomarkers to establish potential role and function of circulating microRNAs in acute heart failure. International Journal of Cardiology, 2016, 224, 231-239.	0.8	53
30	Profiling of adhesive-related genes in the freshwater cnidarian <i>Hydra magnipapillata </i> by transcriptomics and proteomics. Biofouling, 2016, 32, 1115-1129.	0.8	36
31	Spatially Resolved Genome-wide Transcriptional Profiling Identifies BMP Signaling as Essential Regulator of Zebrafish Cardiomyocyte Regeneration. Developmental Cell, 2016, 36, 36-49.	3.1	176
32	MicroRNAs relate to early worsening of renal function in patients with acute heart failure. International Journal of Cardiology, 2016, 203, 564-569.	0.8	35
33	Guanine quadruplex structures localize to heterochromatin. Nucleic Acids Research, 2016, 44, 152-163.	6.5	60
34	Genome-wide profiling of nucleosome sensitivity and chromatin accessibility in <i>Drosophila melanogaster</i> Nucleic Acids Research, 2016, 44, 1036-1051.	6.5	111
35	Transcriptional signatures of somatic neoblasts and germline cells in Macrostomum lignano. ELife, 2016, 5, .	2.8	41
36	miR-378a-3p modulates tamoxifen sensitivity in breast cancer MCF-7 cells through targeting GOLT1A. Scientific Reports, 2015, 5, 13170.	1.6	82

#	Article	IF	CITATIONS
37	Positional RNA-Seq identifies candidate genes for phenotypic engineering of sexual traits. Frontiers in Zoology, 2015, 12, 14.	0.9	34
38	miRNA Nomenclature: A View Incorporating Genetic Origins, Biosynthetic Pathways, and Sequence Variants. Trends in Genetics, 2015, 31, 613-626.	2.9	164
39	Biological adhesion of the flatworm Macrostomum lignano relies on a duo-gland system and is mediated by a cell type-specific intermediate filament protein. Frontiers in Zoology, 2014, 11, 12.	0.9	46
40	The ctenophore genome and the evolutionary origins of neural systems. Nature, 2014, 510, 109-114.	13.7	606
41	Genome-wide RNA Tomography in the Zebrafish Embryo. Cell, 2014, 159, 662-675.	13.5	248
42	Systemic miRNA-7 delivery inhibits tumor angiogenesis and growth in murine xenograft glioblastoma. Oncotarget, 2014, 5, 6687-6700.	0.8	105
43	piRNA dynamics in divergent zebrafish strains reveal long-lasting maternal influence on zygotic piRNA profiles. Rna, 2013, 19, 345-356.	1.6	12
44	Expression Pattern Analysis of MicroRNAs in Caenorhabditis elegans. Methods in Molecular Biology, 2013, 936, 129-141.	0.4	8
45	Mesodermal Gene Expression in the Acoel Isodiametra pulchra Indicates a Low Number of Mesodermal Cell Types and the Endomesodermal Origin of the Gonads. PLoS ONE, 2013, 8, e55499.	1.1	26
46	The Hippo Pathway Regulates Stem Cells During Homeostasis and Regeneration of the Flatworm <i>Macrostomum Lignano</i> Stem Cells and Development, 2013, 22, 2174-2185.	1.1	21
47	Novel small RNA expression libraries uncover hsa-miR-30b and hsa-miR-30c as important factors in anoikis resistance. Rna, 2013, 19, 1711-1725.	1.6	12
48	A Deep Sequencing Approach to Uncover the miRNOME in the Human Heart. PLoS ONE, 2013, 8, e57800.	1.1	88
49	SEX ALLOCATION ADJUSTMENT TO MATING GROUP SIZE IN A SIMULTANEOUS HERMAPHRODITE. Evolution; International Journal of Organic Evolution, 2013, 67, 3233-3242.	1.1	82
50	Biolistic Transformation of Caenorhabditis elegans. Methods in Molecular Biology, 2013, 940, 77-86.	0.4	12
51	Extremely stable Piwi-induced gene silencing in <i>Caenorhabditis elegans</i> . EMBO Journal, 2012, 31, 3422-3430.	3.5	197
52	Hen1 is required for oocyte development and piRNA stability in zebrafish. EMBO Journal, 2012, 31, 248-248.	3.5	0
53	The FlatwormMacrostomum lignanols a Powerful Model Organism for Ion Channel and Stem Cell Research. Stem Cells International, 2012, 2012, 1-10.	1.2	20
54	Differential Impact of the HEN1 Homolog HENN-1 on 21U and 26G RNAs in the Germline of Caenorhabditis elegans. PLoS Genetics, 2012, 8, e1002702.	1.5	96

#	Article	IF	CITATIONS
55	microRNAs associated with the different human Argonaute proteins. Nucleic Acids Research, 2012, 40, 9850-9862.	6.5	179
56	Sample Preparation for Small RNA Massive Parallel Sequencing. Methods in Molecular Biology, 2012, 786, 167-178.	0.4	2
57	Controlling miRNA Regulation in Disease. Methods in Molecular Biology, 2012, 822, 1-18.	0.4	33
58	Abstract 1112: Identification of microRNA-based the rapeutic candidates using a unique lentiviral microRNA over expression library. , 2012, , .		0
59	Tdrd1 acts as a molecular scaffold for Piwi proteins and piRNA targets in zebrafish. EMBO Journal, 2011, 30, 3298-3308.	3.5	70
60	Evolution of microRNA diversity and regulation in animals. Nature Reviews Genetics, 2011, 12, 846-860.	7.7	645
61	Boule-like genes regulate male and female gametogenesis in the flatworm Macrostomum lignano. Developmental Biology, 2011, 357, 117-132.	0.9	39
62	Evidence for post-transcriptional regulation of clustered microRNAs in Drosophila. BMC Genomics, 2011, 12, 371.	1.2	54
63	Functional microRNA screening using a comprehensive lentiviral human microRNA expression library. BMC Genomics, 2011, 12, 546.	1.2	12
64	Deep annotation of <i>Drosophila melanogaster</i> microRNAs yields insights into their processing, modification, and emergence. Genome Research, 2011, 21, 203-215.	2.4	207
65	Neuronal Activity Regulates Hippocampal miRNA Expression. PLoS ONE, 2011, 6, e25068.	1.1	48
66	Fine-tuning the brain: MicroRNAs. Frontiers in Neuroendocrinology, 2010, 31, 128-133.	2.5	31
67	Expression patterns of intronic microRNAs in Caenorhabditis elegans. Silence: A Journal of RNA Regulation, 2010, 1, 5.	8.0	59
68	Hen1 is required for oocyte development and piRNA stability in zebrafish. EMBO Journal, 2010, 29, 3688-3700.	3.5	145
69	Evolutionary flux of canonical microRNAs and mirtrons in Drosophila. Nature Genetics, 2010, 42, 6-9.	9.4	105
70	MicroRNA–Directed siRNA Biogenesis in Caenorhabditis elegans. PLoS Genetics, 2010, 6, e1000903.	1.5	67
71	Identification of Functional Elements and Regulatory Circuits by <i>Drosophila</i> modENCODE. Science, 2010, 330, 1787-1797.	6.0	1,124
72	Tracing the evolution of tissue identity with microRNAs. Genome Biology, 2010, 11, 111.	13.9	16

#	Article	IF	CITATIONS
73	Potential role of miR-29b in modulation of <i>Dnmt3a </i> and <i>Dnmt3b </i> expression in primordial germ cells of female mouse embryos. Rna, 2009, 15, 1507-1514.	1.6	70
74	Abundant primary piRNAs, endo-siRNAs, and microRNAs in a <i>Drosophila</i> ovary cell line. Genome Research, 2009, 19, 1776-1785.	2.4	164
75	Repertoire and evolution of miRNA genes in four divergent nematode species. Genome Research, 2009, 19, 2064-2074.	2.4	107
76	The TRIM-NHL Protein TRIM32 Activates MicroRNAs and Prevents Self-Renewal in Mouse Neural Progenitors. Cell, 2009, 136, 913-925.	13.5	372
77	CDE-1 Affects Chromosome Segregation through Uridylation of CSR-1-Bound siRNAs. Cell, 2009, 139, 135-148.	13.5	164
78	Small RNAs and the control of transposons and viruses in Drosophila. Trends in Microbiology, 2009, 17, 163-171.	3.5	77
79	Zili is required for germ cell differentiation and meiosis in zebrafish. EMBO Journal, 2008, 27, 2702-2711.	3.5	273
80	MicroRNA expression profiles of human leukemias. Leukemia, 2008, 22, 1274-1278.	3.3	19
81	Piwi and piRNAs Act Upstream of an Endogenous siRNA Pathway to Suppress Tc3 Transposon Mobility in the Caenorhabditis elegans Germline. Molecular Cell, 2008, 31, 79-90.	4.5	392
82	Functionally distinct regulatory RNAs generated by bidirectional transcription and processing of microRNA loci. Genes and Development, 2008, 22, 26-36.	2.7	185
83	<i>LPIN2</i> Is Associated With Type 2 Diabetes, Glucose Metabolism, and Body Composition. Diabetes, 2007, 56, 3020-3026.	0.3	52
84	A Role for Piwi and piRNAs in Germ Cell Maintenance and Transposon Silencing in Zebrafish. Cell, 2007, 129, 69-82.	13.5	989
85	Mammalian Mirtron Genes. Molecular Cell, 2007, 28, 328-336.	4.5	675
86	Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification. Nature Protocols, 2007, 2, 2520-2528.	5.5	221
87	Exploring Conservation of Transcription Factor Binding Sites with CONREAL. Methods in Molecular Biology, 2007, 395, 437-448.	0.4	9
88	Cloning and expression of new microRNAs from zebrafish. Nucleic Acids Research, 2006, 34, 2558-2569.	6.5	169
89	Approaches to microRNA discovery. Nature Genetics, 2006, 38, S2-S7.	9.4	453
90	Diversity of microRNAs in human and chimpanzee brain. Nature Genetics, 2006, 38, 1375-1377.	9.4	457

#	Article	IF	Citations
91	Mouse microRNA profiles determined with a new and sensitive cloning method. Nucleic Acids Research, 2006, 34, e115-e115.	6.5	96
92	Differences in vertebrate microRNA expression. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14385-14389.	3.3	251
93	Genetic variation in the zebrafish. Genome Research, 2006, 16, 491-497.	2.4	173
94	Many novel mammalian microRNA candidates identified by extensive cloning and RAKE analysis. Genome Research, 2006, 16, 1289-1298.	2.4	242
95	CASCAD: a database of annotated candidate single nucleotide polymorphisms associated with expressed sequences. BMC Genomics, 2005, 6, 10.	1.2	21
96	Camels and zebrafish, viruses and cancer: a microRNA update. Human Molecular Genetics, 2005, 14, R183-R190.	1.4	86
97	CONREAL web server: identification and visualization of conserved transcription factor binding sites. Nucleic Acids Research, 2005, 33, W447-W450.	6.5	78
98	Phylogenetic Shadowing and Computational Identification of Human microRNA Genes. Cell, 2005, 120, 21-24.	13.5	1,194
99	MicroRNA Expression in Zebrafish Embryonic Development. Science, 2005, 309, 310-311.	6.0	1,448
100	Homologous gene targeting in Caenorhabditis elegans by biolistic transformation. Nucleic Acids Research, 2004, 32, 40e-40.	6.5	78
101	Single Nucleotide Polymorphisms Associated With Rat Expressed Sequences. Genome Research, 2004, 14, 1438-1443.	2.4	50
102	Identifying polymorphisms in the Rattus norvegicus D3 dopamine receptor gene and regulatory region. Genes, Brain and Behavior, 2004, 3, 138-148.	1.1	5
103	The Evolution of SINEs and LINEs in the Genus Chironomus (Diptera). Journal of Molecular Evolution, 2004, 58, 269-279.	0.8	6
104	A position-dependent organisation of retinoid response elements is conserved in the vertebrate Hox clusters. Trends in Genetics, 2003, 19, 476-479.	2.9	38
105	CONREAL: Conserved Regulatory Elements Anchored Alignment Algorithm for Identification of Transcription Factor Binding Sites by Phylogenetic Footprinting. Genome Research, 2003, 14, 170-178.	2.4	78
106	GENOTRACE: cDNA-based local GENOme assembly from TRACE archives. Bioinformatics, 2002, 18, 1396-1397.	1.8	17
107	Identification of Waldo-A and Waldo-B, Two Closely Related Non-LTR Retrotransposons in Drosophila. Molecular Biology and Evolution, 2001, 18, 196-205.	3.5	12
108	A search for reverse transcriptase-coding sequences reveals new non-LTR retrotransposons in the genome of Drosophila melanogaster. Genome Biology, 2000, 1, research0012.1.	13.9	34

#	Article	IF	CITATIONS
109	Structure and polymorphism of the Chironomus thummi gene encoding special lobe-specific silk protein, ssp1601Published in conjunction with A Wisconsin Gathering Honoring Waclaw Szybalski on the occasion of his 75th year and 20 years of Editorship-in-Chief of Gene, 10–11 August 1997, University of Wisconsin, Madison, WI, USA.1. Gene, 1998, 223, 347-354.	1.0	2
110	Exploring Conservation of Transcription Factor Binding Sites with CONREAL., 0,, 437-448.		0
111	MicroRNA Discovery and Expression Profiling using Next-Generation Sequencing. , 0, , 217-228.		0