List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2943137/publications.pdf Version: 2024-02-01

OLCA VALENTOVA

#	Article	IF	CITATIONS
1	Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnology Advances, 2015, 33, 994-1004.	11.7	196
2	Phosphatidic acid produced by phospholipaseÂD is required for tobacco pollen tube growth. Planta, 2003, 217, 122-130.	3.2	168
3	Phosphatidylinositol 4-Kinase Activation Is an Early Response to Salicylic Acid in Arabidopsis Suspension Cells. Plant Physiology, 2007, 144, 1347-1359.	4.8	110
4	Plant hormones in defense response of Brassica napus to Sclerotinia sclerotiorum – Reassessing the role of salicylic acid in the interaction with a necrotroph. Plant Physiology and Biochemistry, 2014, 80, 308-317.	5.8	106
5	Inositol trisphosphate receptor in higher plants: is it real?. Journal of Experimental Botany, 2006, 58, 361-376.	4.8	102
6	Mutual regulation of plant phospholipase D and the actin cytoskeleton. Plant Journal, 2010, 62, 494-507.	5.7	92
7	Phosphoglycerolipids are master players in plant hormone signal transduction. Plant Cell Reports, 2013, 32, 839-851.	5.6	74
8	Phospholipase D Activation Is an Early Component of the Salicylic Acid Signaling Pathway in Arabidopsis Cell Suspensions Â. Plant Physiology, 2009, 150, 424-436.	4.8	67
9	The phosphatidylcholine-hydrolysing phospholipase C NPC4 plays a role in response of Arabidopsis roots to salt stress. Journal of Experimental Botany, 2011, 62, 3753-3763.	4.8	67
10	Affinity chromatography on hydroxyalkyl methacrylate gels. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1973, 322, 1-9.	1.7	62
11	Recognition of Avirulence Gene <i>AvrLm1</i> from Hemibiotrophic Ascomycete <i>Leptosphaeria maculans</i> Triggers Salicylic Acid and Ethylene Signaling in <i>Brassica napus</i> . Molecular Plant-Microbe Interactions, 2012, 25, 1238-1250.	2.6	62
12	Invertase immobilization via its carbohydrate moiety. Biotechnology and Bioengineering, 1984, 26, 1223-1226.	3.3	59
13	Particles with similar LET values generate DNA breaks of different complexity and reparability: a high-resolution microscopy analysis of γH2AX/53BP1 foci. Nanoscale, 2018, 10, 1162-1179.	5.6	56
14	Constitutive salicylic acid accumulation in <i>pi4k<scp>III</scp>β1β2</i> Arabidopsis plants stunts rosette but not root growth. New Phytologist, 2014, 203, 805-816.	7.3	51
15	Involvement ofÂphospholipases C andÂD inÂearly response toÂSAR andÂISR inducers inÂBrassicaÂnapus plants. Plant Physiology and Biochemistry, 2006, 44, 143-151.	5.8	45
16	Aluminium ions inhibit the formation of diacylglycerol generated by phosphatidylcholineâ€hydrolysing phospholipase C in tobacco cells. New Phytologist, 2010, 188, 150-160.	7.3	44
17	Comparison of different methods of glucose oxidase immobilization. Biotechnology and Bioengineering, 1981, 23, 2093-2104.	3.3	43
18	β-aminobutyric acid protects Brassica napus plants from infection by Leptosphaeria maculans. Resistance induction or a direct antifungal effect?. European Journal of Plant Pathology, 2012, 133, 279-289.	1.7	43

#	Article	IF	CITATIONS
19	Arabidopsis non-specific phospholipase C1: characterization and its involvement in response to heat stress. Frontiers in Plant Science, 2015, 6, 928.	3.6	33
20	Cell wall contributes to the stability of plasma membrane nanodomain organization of <i>Arabidopsis thaliana</i> FLOTILLIN2 and HYPERSENSITIVE INDUCED REACTION1 proteins. Plant Journal, 2020, 101, 619-636.	5.7	30
21	<scp><i>L</i></scp> <i>eptosphaeria maculans</i> effector AvrLm4â€7 affects salicylic acid (SA) and ethylene (ET) signalling and hydrogen peroxide (H ₂ O ₂) accumulation in <scp><i>B</i></scp> <i>rassica napus</i> . Molecular Plant Pathology, 2016, 17, 818-831.	4.2	29
22	Mapping of Plasma Membrane Proteins Interacting With Arabidopsis thaliana Flotillin 2. Frontiers in Plant Science, 2018, 9, 991.	3.6	29
23	Noble metal nanoparticles in agriculture: impacts on plants, associated microorganisms, and biotechnological practices. Biotechnology Advances, 2022, 58, 107929.	11.7	29
24	Phospholipase D affects translocation of NPR1 to the nucleus in Arabidopsis thaliana. Frontiers in Plant Science, 2015, 6, 59.	3.6	28
25	Actin depolymerization is able to increase plant resistance against pathogens via activation of salicylic acid signalling pathway. Scientific Reports, 2019, 9, 10397.	3.3	27
26	Critical analysis of phospholipid hydrolyzing activities in ripening tomato fruits. Study by spectrofluorimetry and high-performance liquid chromatography. Lipids, 1995, 30, 739-746.	1.7	26
27	The Arabidopsis thaliana non-specific phospholipase C2 is involved in the response to Pseudomonas syringae attack. Annals of Botany, 2018, 121, 297-310.	2.9	26
28	Pepsin immobilized by covalent fixation to hydroxyalkyl methacrylate gels: Preparation and characterization. Biochimica Et Biophysica Acta - Biomembranes, 1975, 403, 192-196.	2.6	24
29	Plant PIP2 -dependent phospholipase D activity is regulated by phosphorylation. FEBS Letters, 2003, 554, 50-54.	2.8	24
30	Affinity chromatography on hydroxyalkyl methacrylate gels III. Adsorption of chymotrypsin to poly(hydroxyalkyl methacrylates) with covalently bound benzyloxycarbonyl-glycyl-d-phenylalanine and -d-leucine as function of pH and ionic strength. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1976, 427, 586-593.	1.7	23
31	Changes in actin dynamics are involved in salicylic acid signaling pathway. Plant Science, 2014, 223, 36-44.	3.6	22
32	Determination of phospholipase D activity with a choline biosensor. Analytica Chimica Acta, 1993, 280, 43-48.	5.4	20
33	Flotillins, Erlins, and HIRs: From Animal Base Camp to Plant New Horizons. Critical Reviews in Plant Sciences, 2016, 35, 191-214.	5.7	20
34	Purification of microbial uricase. Biomedical Applications, 1989, 497, 268-275.	1.7	19
35	Role of hydrogen peroxide and antioxidant enzymes in the interaction between a hemibiotrophic fungal pathogen, Leptosphaeria maculans, and oilseed rape. Environmental and Experimental Botany, 2011, 72, 149-156.	4.2	19
36	"Salicylic Acid Mutant Collection―as a Tool to Explore the Role of Salicylic Acid in Regulation of Plant Growth under a Changing Environment. International Journal of Molecular Sciences, 2019, 20, 6365.	4.1	19

#	Article	IF	CITATIONS
37	Immobilization of glycoenzymes by means of their glycosidic components. Biotechnology Letters, 1983, 5, 653-658.	2.2	18
38	Aluminum ions inhibit phospholipase D in a microtubuleâ€dependent manner. Cell Biology International, 2008, 32, 554-556.	3.0	18
39	Interconnection between actin cytoskeleton and plant defense signaling. Plant Signaling and Behavior, 2014, 9, e976486.	2.4	16
40	A microplate technique for phospholipase D activity determination. Analytica Chimica Acta, 1995, 315, 109-112.	5.4	15
41	Phospholipase Dδassists to cortical microtubule recovery after salt stress. Protoplasma, 2018, 255, 1195-1204.	2.1	15
42	Identification of salicylic acid-independent responses in an Arabidopsis phosphatidylinositol 4-kinase beta double mutant. Annals of Botany, 2020, 125, 775-784.	2.9	15
43	Genomic Damage Induced in Nicotiana tabacum L. Plants by Colloidal Solution with Silver and Gold Nanoparticles. Plants, 2021, 10, 1260.	3.5	15
44	In vitro distribution and characterization of membrane-associated PLD and PI-PLC in Brassica napus. Journal of Experimental Botany, 2003, 54, 691-698.	4.8	14
45	Cell Wall Components of Leptosphaeria maculans Enhance Resistance of Brassica napus. Journal of Agricultural and Food Chemistry, 2013, 61, 5207-5214.	5.2	14
46	Purification and characterisation of rape seed phospholipase D. Plant Physiology and Biochemistry, 1999, 37, 531-537.	5.8	14
47	Purification and characterisation of rape seed phospholipase D. Plant Physiology and Biochemistry, 1999, 37, 531-537.	5.8	13
48	Chitinase isozymes induced by TYMV and Leptosphaeria maculans during compatible and incompatible interaction with Brassica napus. Biologia Plantarum, 2007, 51, 507-513.	1.9	13
49	Size-related oxygen consumption and ammonia excretion of Eurasian perch (Perca fluviatilis L.) reared in a recirculating system. Aquaculture Research, 2009, 41, 135-142.	1.8	11
50	Isolation of aminopeptidase from Aspergillus flavus. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1976, 420, 309-315.	1.7	9
51	Reactive carriers of immobilized compounds. Biochimica Et Biophysica Acta - Biomembranes, 1977, 481, 289-296.	2.6	8
52	Influence of microwave treatment on the quality of rapeseed oil. JAOCS, Journal of the American Oil Chemists' Society, 2002, 79, 1271-1272.	1.9	8
53	Enzymic determination of glucose in foodstuffs. Journal of the Science of Food and Agriculture, 1983, 34, 748-754.	3.5	7
54	Editorial: Lipid Signaling in Plant Development and Responses to Environmental Stresses. Frontiers in Plant Science, 2016, 7, 324.	3.6	7

#	Article	IF	CITATIONS
55	Interplay between phosphoinositides and actin cytoskeleton in the regulation of immunity related responses in Arabidopsis thaliana seedlings. Environmental and Experimental Botany, 2019, 167, 103867.	4.2	7
56	Spectrophotometric flow-injection determination of urea in body fluids by using an immobilized urease reactor. Analytica Chimica Acta, 1989, 218, 151-155.	5.4	6
57	Sensitive techniques for phospholipase D determination in plants. TrAC - Trends in Analytical Chemistry, 1993, 12, 266-271.	11.4	6
58	Immobilized preparations for the biotransformation of daunomycinone. Biotechnology Letters, 1981, 3, 327-330.	2.2	5
59	Immobilization of cells via activated cell walls. Biotechnology Letters, 1986, 8, 721-724.	2.2	5
60	Separation and identification of candidate protein elicitors from the cultivation medium of <i>Leptosphaeria maculans</i> inducing resistance in <i>Brassica napus</i> . Biotechnology Progress, 2016, 32, 918-928.	2.6	5
61	Identification of phospholipase D genes in Brassica napus and their transcription after phytohormone treatment and pathogen infection. Biologia Plantarum, 2015, 59, 581-590.	1.9	4
62	Production of glucose isomerase by different strains ofStreptomyces. Biotechnology Letters, 1979, 1, 293-298.	2.2	3
63	Regulation of the microsomal proteome by salicylic acid andÂdeficiency of phosphatidylinositolâ€4â€kinases β1 and β2 in Arabidopsis thaliana. Proteomics, 2021, 21, 2000223.	2.2	3
64	Study of phospholipases D and C in maturing and germinating seeds of Brassica napus. Biochemical Society Transactions, 2000, 28, 817.	3.4	3
65	High-performance anion-exchange chromatography of rennet enzymes. Journal of Chromatography A, 1988, 438, 451-453.	3.7	2
66	Some methods for isolation and assays of enzymes occurring in cereals and legumes. Food Reviews International, 1992, 8, 559-572.	8.4	2
67	Purification of glycerophosphate oxidase isolated from mutant strain of aerococcus viridans. Biotechnology Letters, 1993, 7, 435-438.	0.5	1
68	An open tubular heterogeneous trypsin reactor. Collection of Czechoslovak Chemical Communications, 1976, 41, 164-171.	1.0	1
69	Study of cytosolic and membrane-bound phospholipase D in poppy seedlings, Papaver somniferum L Chemistry and Physics of Lipids, 2008, 154, S59.	3.2	0
70	Changes of Phospholipase D Activity during Rape Seed Development and Processing. , 1997, , 275-277.		0