Lukas Sommer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2942605/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Loss of YY1, a Regulator of Metabolism in Melanoma, Drives Melanoma Cell Invasiveness and Metastasis Formation. Frontiers in Cell and Developmental Biology, 2022, 10, .	3.7	3
2	Reemergence of neural crest stem cell-like states in melanoma during disease progression and treatment. Stem Cells Translational Medicine, 2021, 10, 522-533.	3.3	41
3	Epigenetic control of melanoma cell invasiveness by the stem cell factor SALL4. Nature Communications, 2021, 12, 5056.	12.8	15
4	NK cells in hypoxic skin mediate a trade-off between wound healing and antibacterial defence. Nature Communications, 2021, 12, 4700.	12.8	29
5	Developmental Biology of Melanocytes. , 2019, , 3-19.		0
6	Yin Yang 1 sustains biosynthetic demands during brain development in a stage-specific manner. Nature Communications, 2019, 10, 2192.	12.8	28
7	Yin Yang 1 Orchestrates a Metabolic Program Required for Both Neural Crest Development and Melanoma Formation. Cell Stem Cell, 2019, 24, 637-653.e9.	11.1	44
8	SMAD signaling promotes melanoma metastasis independently of phenotype switching. Journal of Clinical Investigation, 2019, 129, 2702-2716.	8.2	41
9	Creâ€driver lines used for genetic fate mapping of neural crest cells in the mouse: An overview. Genesis, 2018, 56, e23105.	1.6	39
10	Injury-activated glial cells promote wound healing of the adult skin in mice. Nature Communications, 2018, 9, 236.	12.8	119
11	Rare, yet relevant tumor cells – A new twist to melanoma cell plasticity. Pigment Cell and Melanoma Research, 2018, 31, 7-9.	3.3	3
12	Injury and stress responses of adult neural crest-derived cells. Developmental Biology, 2018, 444, S356-S365.	2.0	23
13	EZH2-Mediated Primary Cilium Deconstruction Drives Metastatic Melanoma Formation. Cancer Cell, 2018, 34, 69-84.e14.	16.8	123
14	Developmental Biology of Melanocytes. , 2018, , 1-17.		0
15	Mouse Cutaneous Melanoma Induced by Mutant BRaf Arises from Expansion and Dedifferentiation of Mature Pigmented Melanocytes. Cell Stem Cell, 2017, 21, 679-693.e6.	11.1	93
16	The Histone Methyltransferase Ezh2 Controls Mechanisms of Adaptive Resistance to Tumor Immunotherapy. Cell Reports, 2017, 20, 854-867.	6.4	258
17	Quo vadis: tracing the fate of neural crest cells. Current Opinion in Neurobiology, 2017, 47, 16-23.	4.2	13
18	The low affinity neurotrophin receptor CD271 regulates phenotype switching in melanoma. Nature Communications, 2017, 8, 1988.	12.8	64

#	Article	IF	CITATIONS
19	Evidence of renal angiomyolipoma neoplastic stem cells arising from renal epithelial cells. Nature Communications, 2017, 8, 1466.	12.8	20
20	Improved cancer immunotherapy by a CD25-mimobody conferring selectivity to human interleukin-2. Science Translational Medicine, 2016, 8, 367ra166.	12.4	113
21	Loss of Ezh2 promotes a midbrain-to-forebrain identity switch by direct gene derepression and Wnt-dependent regulation. BMC Biology, 2015, 13, 103.	3.8	42
22	Methylation-dependent SOX9 expression mediates invasion in human melanoma cells and is a negative prognostic factor in advanced melanoma. Genome Biology, 2015, 16, 42.	8.8	76
23	Distinct adhesion-independent functions of β-catenin control stage-specific sensory neurogenesis and proliferation. BMC Biology, 2015, 13, 24.	3.8	9
24	In Vitro Derivation of Melanocytes from Embryonic Neural Crest Stem Cells. Methods in Molecular Biology, 2015, , 1.	0.9	8
25	Wnt/β-Catenin Signaling Regulates Sequential Fate Decisions of Murine Cortical Precursor Cells. Stem Cells, 2015, 33, 170-182.	3.2	59
26	The epigenetic modifier EZH2 controls melanoma growth and metastasis through silencing of distinct tumour suppressors. Nature Communications, 2015, 6, 6051.	12.8	281
27	Premigratory and Migratory Neural Crest Cells Are Multipotent InÂVivo. Cell Stem Cell, 2015, 16, 314-322.	11.1	180
28	Antagonistic Cross-Regulation between Sox9 and Sox10 Controls an Anti-tumorigenic Program in Melanoma. PLoS Genetics, 2015, 11, e1004877.	3.5	85
29	Persistent Wnt/βâ€Catenin Signaling Determines Dorsalization of the Postnatal Subventricular Zone and Neural Stem Cell Specification into Oligodendrocytes and Glutamatergic Neurons. Stem Cells, 2014, 32, 1301-1312.	3.2	78
30	Sox5 and chromatophores: switching pigment cell fates. Pigment Cell and Melanoma Research, 2014, 27, 1004-1005.	3.3	1
31	Ezh2 is required for neural crest-derived cartilage and bone formation. Development (Cambridge), 2014, 141, 867-877.	2.5	101
32	Smad4 and Trim33/Tif1Î ³ Redundantly Regulate Neural Stem Cells in the Developing Cortex. Cerebral Cortex, 2014, 24, 2951-2963.	2.9	16
33	HDAC1 and HDAC2 Control the Specification of Neural Crest Cells into Peripheral Glia. Journal of Neuroscience, 2014, 34, 6112-6122.	3.6	76
34	Reinventing the Neural Crest: Direct Reprogramming Makes iNCCs. Cell Stem Cell, 2014, 15, 397-399.	11.1	0
35	An Aggressive Hypoxia Related Subpopulation of Melanoma Cells is TRP-2 Negative. Translational Oncology, 2014, 7, 206-212.	3.7	15
36	Coexpression of SOX10/CD271 (p75 ^{NTR}) and β-Galactosidase in Large to Giant Congenital Melanocytic Nevi of Pediatric Patients. Dermatopathology (Basel, Switzerland), 2014, 1, 35-46.	1.5	3

#	Article	IF	CITATIONS
37	Open questions: development of tumor cell heterogeneity and its implications for cancer treatment. BMC Biology, 2014, 12, 15.	3.8	2
38	Wild-type ALK and activating ALK-R1275Q and ALK-F1174L mutations upregulate Myc and initiate tumor formation in murine neural crest progenitor cells. Oncotarget, 2014, 5, 4452-4466.	1.8	32
39	Testing the cancer stem cell hypothesis in melanoma: The clinics will tell. Cancer Letters, 2013, 338, 74-81.	7.2	50
40	A Dual Role for SOX10 in the Maintenance of the Postnatal Melanocyte Lineage and the Differentiation of Melanocyte Stem Cell Progenitors. PLoS Genetics, 2013, 9, e1003644.	3.5	85
41	Generating melanocytes from human pluripotent stem cells. Pigment Cell and Melanoma Research, 2013, 26, 608-610.	3.3	1
42	Engineering Melanoma Progression in a Humanized Environment In Vivo. Journal of Investigative Dermatology, 2012, 132, 144-153.	0.7	21
43	Temporal control of neural crest lineage generation by Wnt/β-catenin signaling. Development (Cambridge), 2012, 139, 2107-2117.	2.5	128
44	Sox10 promotes the formation and maintenance of giant congenital naevi and melanoma. Nature Cell Biology, 2012, 14, 882-890.	10.3	232
45	Neural crest progenitors and stem cells: From early development to adulthood. Developmental Biology, 2012, 366, 83-95.	2.0	197
46	Tumor Cell Plasticity and Angiogenesis in Human Melanomas. PLoS ONE, 2012, 7, e33571.	2.5	53
47	In Vivo Tumorigenesis Was Observed after Injection of In Vitro Expanded Neural Crest Stem Cells Isolated from Adult Bone Marrow. PLoS ONE, 2012, 7, e46425.	2.5	25
48	Functional Sphere Profiling Reveals the Complexity of Neuroblastoma Tumor-Initiating Cell Model. Neoplasia, 2011, 13, 991-IN30.	5.3	61
49	Generation of melanocytes from neural crest cells. Pigment Cell and Melanoma Research, 2011, 24, 411-421.	3.3	136
50	Pramel7 Mediates LIF/STAT3-Dependent Self-Renewal in embryoniC Stem Cells. Stem Cells, 2011, 29, 474-485.	3.2	40
51	Transforming Growth Factor β-Mediated Sox10 Suppression Controls Mesenchymal Progenitor Generation in Neural Crest Stem Cells. Stem Cells, 2011, 29, 689-699.	3.2	59
52	Human CD271-Positive Melanoma Stem Cells Associated with Metastasis Establish Tumor Heterogeneity and Long-term Growth. Cancer Research, 2011, 71, 3098-3109.	0.9	294
53	Probing transcription-specific outputs of \hat{l}^2 -catenin in vivo. Genes and Development, 2011, 25, 2631-2643.	5.9	112
54	Chemokines in neuroectodermal development and their potential implication in cancer stem cell-driven metastasis. Seminars in Cancer Biology, 2009, 19, 68-75.	9.6	10

#	Article	IF	CITATIONS
55	Stage- and area-specific control of stem cells in the developing nervous system. Current Opinion in Genetics and Development, 2009, 19, 454-460.	3.3	19
56	Stage-Specific Control of Neural Crest Stem Cell Proliferation by the Small Rho GTPases Cdc42 and Rac1. Cell Stem Cell, 2009, 4, 236-247.	11.1	98
57	Multiple lineage-specific roles of Smad4 during neural crest development. Developmental Biology, 2009, 330, 329-338.	2.0	23
58	Development of the Schwann cell lineage: From the neural crest to the myelinated nerve. Glia, 2008, 56, 1481-1490.	4.9	197
59	Brain Area-Specific Effect of TGF-β Signaling on Wnt-Dependent Neural Stem Cell Expansion. Cell Stem Cell, 2008, 2, 472-483.	11.1	123
60	The Neural Crest: Understanding Stem Cell Function in Development and Disease. Neurodegenerative Diseases, 2007, 4, 6-12.	1.4	15
61	Wnt/BMP signal integration regulates the balance between proliferation and differentiation of neuroepithelial cells in the dorsal spinal cord. Developmental Biology, 2007, 304, 394-408.	2.0	97
62	Establishment and controlled differentiation of neural crest stem cell lines using conditional transgenesis. Differentiation, 2007, 75, 580-591.	1.9	47
63	Growth Factors Regulating Neural Crest Cell Fate Decisions. , 2006, 589, 197-205.		24
64	TGF beta signaling in neural crest cells in development and diseases. Toxicology Letters, 2006, 164, S51.	0.8	0
65	DiGeorge syndrome and pharyngeal apparatus development. BioEssays, 2006, 28, 1078-1086.	2.5	47
66	Neural crest–derived cells with stem cell features can be traced back to multiple lineages in the adult skin. Journal of Cell Biology, 2006, 175, 1005-1015.	5.2	293
67	Versican VO and V1 Guide Migratory Neural Crest Cells. Journal of Biological Chemistry, 2006, 281, 12123-12131.	3.4	85
68	Compound developmental eye disorders following inactivation of TGFbeta signaling in neural-crest stem cells. Journal of Biology, 2005, 4, 11.	2.7	110
69	Inactivation of TGFÎ ² signaling in neural crest stem cells leads to multiple defects reminiscent of DiGeorge syndrome. Genes and Development, 2005, 19, 530-535.	5.9	134
70	Neural crest stem cell maintenance by combinatorial Wnt and BMP signaling. Journal of Cell Biology, 2005, 169, 309-320.	5.2	176
71	Checkpoints of Melanocyte Stem Cell Development. Science Signaling, 2005, 2005, pe42-pe42.	3.6	21

5

#	Article	IF	CITATIONS
73	Instructive Role of Wnt/ÄŸ-Catenin in Sensory Fate Specification in Neural Crest Stem Cells. Science, 2004, 303, 1020-1023.	12.6	393
74	Multiple Roles of Canonical Wnt Signaling in Cell Cycle Progression and Cell Lineage Specification in Neural Development. Cell Cycle, 2004, 3, 699-701.	2.6	10
75	Efficient Isolation and Gene Expression Profiling of Small Numbers of Neural Crest Stem Cells and Developing Schwann Cells. Journal of Neuroscience, 2004, 24, 2357-2365.	3.6	86
76	Wnt signaling and the regulation of stem cell function. Current Opinion in Cell Biology, 2004, 16, 681-687.	5.4	178
77	The Protooncogene Ski Controls Schwann Cell Proliferation and Myelination. Neuron, 2004, 43, 499-511.	8.1	62
78	Lineage-specific requirements of <i>β-catenin</i> in neural crest development. Journal of Cell Biology, 2002, 159, 867-880.	5.2	312
79	Sox10 haploinsufficiency affects maintenance of progenitor cells in a mouse model of Hirschsprung disease. Human Molecular Genetics, 2002, 11, 3075-3085.	2.9	140
80	Membrane-Bound Neuregulin1 Type III Actively Promotes Schwann Cell Differentiation of Multipotent Progenitor Cells. Developmental Biology, 2002, 246, 245-258.	2.0	87
81	The Role of the Ets Domain Transcription Factor Erm in Modulating Differentiation of Neural Crest Stem Cells. Developmental Biology, 2002, 250, 168-180.	2.0	39
82	Neural stem cells and regulation of cell number. Progress in Neurobiology, 2002, 66, 1-18.	5.7	164
83	Cell-intrinsic and cell-extrinsic cues regulating lineage decisions in multipotent neural crest-derived progenitor cells. International Journal of Developmental Biology, 2002, 46, 193-200.	0.6	33
84	Context-dependent regulation of fate decisions in multipotent progenitor cells of the peripheral nervous system. Cell and Tissue Research, 2001, 305, 211-216.	2.9	42
85	Multiple roles of mouse Numb in tuning developmental cell fates. Current Biology, 2001, 11, 494-501.	3.9	121
86	Survival and glial fate acquisition of neural crest cells are regulated by an interplay between the transcription factor Sox10 and extrinsic combinatorial signaling. Development (Cambridge), 2001, 128, 3949-3961.	2.5	285
87	The Ets Domain Transcription Factor Erm Distinguishes Rat Satellite Glia from Schwann Cells and Is Regulated in Satellite Cells by Neuregulin Signaling. Developmental Biology, 2000, 219, 44-58.	2.0	61
88	Autonomic Neurogenesis and Apoptosis Are Alternative Fates of Progenitor Cell Communities Induced by TGFβ. Developmental Biology, 2000, 228, 57-72.	2.0	58
89	Notch signalling controls pancreatic cell differentiation. Nature, 1999, 400, 877-881.	27.8	1,075
90	Embryonic gene expression resolved at the cellular level by fluorescence in situ hybridization. Histochemistry and Cell Biology, 1999, 111, 435-443.	1.7	25

#	Article	IF	CITATIONS
91	The glycoprotein PO in peripheral gliogenesis. Cell and Tissue Research, 1998, 292, 11-16.	2.9	30
92	<i>Mash1</i> and <i>neurogenin1</i> Expression Patterns Define Complementary Domains of Neuroepithelium in the Developing CNS and Are Correlated with Regions Expressing Notch Ligands. Journal of Neuroscience, 1997, 17, 3644-3652.	3.6	210
93	MASH1 maintains competence for BMP2-induced neuronal differentiation in post-migratory neural crest cells. Current Biology, 1997, 7, 440-450.	3.9	192
94	RPTPδ and the novel protein tyrosine phosphatase RPTPÏ` are expressed in restricted regions of the developing central nervous system. , 1997, 208, 48-61.		67
95	neurogenins,a Novel Family ofatonal-Related bHLH Transcription Factors, Are Putative Mammalian Neuronal Determination Genes That Reveal Progenitor Cell Heterogeneity in the Developing CNS and PNS. Molecular and Cellular Neurosciences, 1996, 8, 221-241.	2.2	518
96	The cellular function of MASH1 in autonomic neurogenesis. Neuron, 1995, 15, 1245-1258.	8.1	230