Jingbo Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2942462/publications.pdf Version: 2024-02-01

ΙΙΝΟΒΟ ΖΗΛΟ

#	Article	IF	CITATIONS
1	The Critical Impact of Material and Process Compatibility on the Active Layer Morphology and Performance of Organic Ternary Solar Cells. Advanced Energy Materials, 2019, 9, 1802293.	19.5	35
2	Quantitative relations between interaction parameter, miscibility and function in organic solar cells. Nature Materials, 2018, 17, 253-260.	27.5	556
3	Miscibility–Function Relations in Organic Solar Cells: Significance of Optimal Miscibility in Relation to Percolation. Advanced Energy Materials, 2018, 8, 1703058.	19.5	223
4	Integrated circuits based on conjugated polymer monolayer. Nature Communications, 2018, 9, 451.	12.8	69
5	Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells. Chemical Reviews, 2018, 118, 3447-3507.	47.7	1,371
6	A Facile Method to Fineâ€Tune Polymer Aggregation Properties and Blend Morphology of Polymer Solar Cells Using Donor Polymers with Randomly Distributed Alkyl Chains. Advanced Energy Materials, 2018, 8, 1701895.	19.5	62
7	Efficient Nonfullerene Organic Solar Cells with Small Driving Forces for Both Hole and Electron Transfer. Advanced Materials, 2018, 30, e1804215.	21.0	161
8	An Electron Acceptor with Broad Visible–NIR Absorption and Unique Solid State Packing for As ast High Performance Binary Organic Solar Cells. Advanced Functional Materials, 2018, 28, 1802324.	14.9	116
9	Comparing non-fullerene acceptors with fullerene in polymer solar cells: a case study with FTAZ and PyCNTAZ. Journal of Materials Chemistry A, 2017, 5, 4886-4893.	10.3	44
10	Improved Performance of Allâ€Polymer Solar Cells Enabled by Naphthodiperylenetetraimideâ€Based Polymer Acceptor. Advanced Materials, 2017, 29, 1700309.	21.0	306
11	A Vinyleneâ€Bridged Perylenediimideâ€Based Polymeric Acceptor Enabling Efficient Allâ€Polymer Solar Cells Processed under Ambient Conditions. Advanced Materials, 2016, 28, 8483-8489.	21.0	222
12	Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nature Energy, 2016, 1, .	39.5	1,167
13	Donor polymer design enables efficient non-fullerene organic solar cells. Nature Communications, 2016, 7, 13094.	12.8	328
14	Efficient organic solar cells processed from hydrocarbon solvents. Nature Energy, 2016, 1, .	39.5	2,129
15	A Difluorobenzoxadiazole Building Block for Efficient Polymer Solar Cells. Advanced Materials, 2016, 28, 1868-1873.	21.0	125
16	Organic Solar Cells: Influence of Processing Parameters and Molecular Weight on the Morphology and Properties of High-Performance PffBT4T-2OD:PC71BM Organic Solar Cells (Adv. Energy Mater.) Tj ETQq0 0 C) rgBT5/Ov	erl o ck 10 Tf 5
17	Influence of Processing Parameters and Molecular Weight on the Morphology and Properties of Highâ€Performance PffBT4Tâ€2OD:PC ₇₁ BM Organic Solar Cells. Advanced Energy Materials, 2015, 5, 1501400.	19.5	166

18Highâ€Performance Nonâ€Fullerene Polymer Solar Cells Based on a Pair of Donor–Acceptor Materials
with Complementary Absorption Properties. Advanced Materials, 2015, 27, 7299-7304.21.0230

JINGBO ΖΗΑΟ

#	Article	IF	CITATIONS
19	Efficient Lowâ€Bandgap Polymer Solar Cells with High Openâ€Circuit Voltage and Good Stability. Advanced Energy Materials, 2015, 5, 1501282.	19.5	76
20	Efficient non-fullerene polymer solar cells enabled by tetrahedron-shaped core based 3D-structure small-molecular electron acceptors. Journal of Materials Chemistry A, 2015, 3, 13632-13636.	10.3	100
21	Dramatic performance enhancement for large bandgap thick-film polymer solar cells introduced by a difluorinated donor unit. Nano Energy, 2015, 15, 607-615.	16.0	93
22	Organic Solar Cells: A Tetraphenylethylene Coreâ€Based 3D Structure Small Molecular Acceptor Enabling Efficient Nonâ€Fullerene Organic Solar Cells (Adv. Mater. 6/2015). Advanced Materials, 2015, 27, 1014-1014.	21.0	9
23	Terthiophene-Based D–A Polymer with an Asymmetric Arrangement of Alkyl Chains That Enables Efficient Polymer Solar Cells. Journal of the American Chemical Society, 2015, 137, 14149-14157.	13.7	386
24	The influence of spacer units on molecular properties and solar cell performance of non-fullerene acceptors. Journal of Materials Chemistry A, 2015, 3, 20108-20112.	10.3	41
25	Isobenzofulvene-fullerene mono-adducts for organic photovoltaic applications. Journal of Materials Chemistry C, 2015, 3, 977-980.	5.5	11
26	A Tetraphenylethylene Coreâ€Based 3D Structure Small Molecular Acceptor Enabling Efficient Nonâ€Fullerene Organic Solar Cells. Advanced Materials, 2015, 27, 1015-1020.	21.0	362
27	High-efficiency non-fullerene organic solar cells enabled by a difluorobenzothiadiazole-based donor polymer combined with a properly matched small molecule acceptor. Energy and Environmental Science, 2015, 8, 520-525.	30.8	379
28	Highâ€Efficiency Allâ€Polymer Solar Cells Based on a Pair of Crystalline Lowâ€Bandgap Polymers. Advanced Materials, 2014, 26, 7224-7230.	21.0	228
29	Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nature Communications, 2014, 5, 5293.	12.8	2,854