Taras P Pasternak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/29423/publications.pdf

Version: 2024-02-01

42 papers 3,462 citations

331670 21 h-index 276875 41 g-index

51 all docs

51 docs citations

51 times ranked

4041 citing authors

#	Article	IF	CITATIONS
1	A simple pipeline for cell cycle kinetic studies in the root apical meristem. Journal of Experimental Botany, 2022, 73, 4683-4695.	4.8	5
2	The role of <i>AUX1</i> during lateral root development in the domestication of the model C4 grass <i>Setaria italica</i> Journal of Experimental Botany, 2022, 73, 2021-2034.	4.8	7
3	Optimizing Protocols for Arabidopsis Shoot and Root Protoplast Cultivation. Plants, 2021, 10, 375.	3.5	15
4	Editorial: How Cells Build Plants: Regulatory Mechanisms for Integrated Functioning of Plant Cells and the Whole Plant Body. Frontiers in Plant Science, 2021, 12, 706892.	3.6	0
5	Flavonolâ€mediated stabilization of PIN efflux complexes regulates polar auxin transport. EMBO Journal, 2021, 40, e104416.	7.8	61
6	Methods of In Situ Quantitative Root Biology. Plants, 2021, 10, 2399.	3.5	5
7	Cell Dynamics in WOX5-Overexpressing Root Tips: The Impact of Local Auxin Biosynthesis. Frontiers in Plant Science, 2020, 11, 560169.	3.6	26
8	Glutathione Enhances Auxin Sensitivity in Arabidopsis Roots. Biomolecules, 2020, 10, 1550.	4.0	18
9	From Single Cell to Plants: Mesophyll Protoplasts as a Versatile System for Investigating Plant Cell Reprogramming. International Journal of Molecular Sciences, 2020, 21, 4195.	4.1	19
10	3D Analysis of Mitosis Distribution Pattern in the Plant Root Tip with iRoCS Toolbox. Methods in Molecular Biology, 2020, 2094, 119-125.	0.9	16
11	Modeling of asymmetric division of somatic cell in protoplasts culture of higher plants. Regulatory Mechanisms in Biosystems, 2020, 11, 255-265.	0.6	1
12	Epigenetic Clues to Better Understanding of the Asexual Embryogenesis in planta and in vitro. Frontiers in Plant Science, 2019, 10, 778.	3.6	17
13	Salicylic Acid Affects Root Meristem Patterning via Auxin Distribution in a Concentration-Dependent Manner. Plant Physiology, 2019, 180, 1725-1739.	4.8	114
14	A PLA-iRoCS Pipeline for the Localization of Protein–Protein Interactions In Situ. Methods in Molecular Biology, 2018, 1787, 161-170.	0.9	2
15	Interplay of the two ancient metabolites auxin and MEcPP regulates adaptive growth. Nature Communications, 2018, 9, 2262.	12.8	27
16	3D analysis of mitosis distribution highlights the longitudinal zonation and diarch symmetry in proliferation activity of the <i>Arabidopsis thaliana</i>	5.7	32
17	A 3D digital atlas of the <i>Nicotiana tabacum</i> root tip and its use to investigate changes in the root apical meristem induced by the <i>Agrobacterium 6b</i> oncogene. Plant Journal, 2017, 92, 31-42.	5.7	24
18	Systems biology analysis of the WOX5 gene and its functions in the root stem cell niche. Russian Journal of Genetics: Applied Research, 2017, 7, 404-420.	0.4	5

#	Article	IF	Citations
19	2-D Clinostat for Simulated Microgravity Experiments with Arabidopsis Seedlings. Microgravity Science and Technology, 2016, 28, 59-66.	1.4	15
20	Protocol: an improved and universal procedure for whole-mount immunolocalization in plants. Plant Methods, 2015, 11, 50.	4.3	128
21	The key role of PIN proteins in auxin transport in Arabidopsis thaliana Roots. Russian Journal of Genetics: Applied Research, 2015, 5, 279-285.	0.4	2
22	The <scp>iRoCS T</scp> oolbox – 3 <scp>D</scp> analysis of the plant root apical meristem at cellular resolution. Plant Journal, 2014, 77, 806-814.	5.7	80
23	The thiol compounds glutathione and homoglutathione differentially affect cell development in alfalfa (Medicago sativa L.). Plant Physiology and Biochemistry, 2014, 74, 16-23.	5.8	22
24	Plastid-Localized Glutathione Reductase2-Regulated Glutathione Redox Status Is Essential for Arabidopsis Root Apical Meristem Maintenance. Plant Cell, 2013, 25, 4451-4468.	6.6	126
25	Modification of plant <scp>R</scp> ac/ <scp>R</scp> op <scp>GTP</scp> ase signalling using bacterial toxin transgenes. Plant Journal, 2013, 73, 314-324.	5.7	8
26	The Arabidopsis thaliana Mob1A gene is required for organ growth and correct tissue patterning of the root tip. Annals of Botany, 2013, 112, 1803-1814.	2.9	18
27	Modeling of Sparsely Sampled Tubular Surfaces Using Coupled Curves. Lecture Notes in Computer Science, 2012, , 83-92.	1.3	6
28	Dehydroascorbate and glutathione regulate the cellular development of Nicotiana tabacum L. SR-1 protoplasts. In Vitro Cellular and Developmental Biology - Plant, 2010, 46, 289-297.	2.1	14
29	Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant, Cell and Environment, 2009, 32, 158-169.	5.7	319
30	The involvement of reactive oxygen species (ROS) in the cell cycle activation (G $<$ sub $>$ 0 $<$ lsub $>$ -to-G $<$ sub $>$ 1 $<$ lsub $>$ transition) of plant cells. Plant Signaling and Behavior, 2008, 3, 823-826.	2.4	77
31	Stress-induced morphogenic responses: growing out of trouble?. Trends in Plant Science, 2007, 12, 98-105.	8.8	641
32	Linked activation of cell division and oxidative stress defense in alfalfa leaf protoplast-derived cells is dependent on exogenous auxin. Plant Growth Regulation, 2007, 51, 109-117.	3.4	59
33	Fast Scalar and Vectorial Grayscale Based Invariant Features for 3D Cell Nuclei Localization and Classification. Lecture Notes in Computer Science, 2006, , 182-191.	1.3	12
34	Nitric oxide is required for, and promotes auxin-mediated activation of, cell division and embryogenic cell formation but does not influence cell cycle progression in alfalfa cell cultures. Plant Journal, 2005, 43, 849-860.	5.7	153
35	Morphogenic effects of abiotic stress: reorientation of growth in seedlings. Environmental and Experimental Botany, 2005, 53, 299-314.	4.2	153
36	Complementary interactions between oxidative stress and auxins control plant growth responses at plant, organ, and cellular level. Journal of Experimental Botany, 2005, 56, 1991-2001.	4.8	187

#	Article	IF	CITATIONS
37	Transition of somatic plant cells to an embryogenic state. Plant Cell, Tissue and Organ Culture, 2003, 74, 201-228.	2.3	551
38	Phytoglobins can interfere with nitric oxide functions during plant growth and pathogenic responses: a transgenic approach. Plant Science, 2003, 165, 541-550.	3.6	62
39	The Role of Auxin, pH, and Stress in the Activation of Embryogenic Cell Division in Leaf Protoplast-Derived Cells of Alfalfa. Plant Physiology, 2002, 129, 1807-1819.	4.8	316
40	Cell-Cycle, Phase-Specific Activation of Maize streak virus Promoters. Molecular Plant-Microbe Interactions, 2001, 14, 609-617.	2.6	10
41	Title is missing!. Plant Growth Regulation, 2000, 32, 129-141.	3.4	53

Embryogenic Callus Formation and Plant Regeneration from Leaf Base Segments of Barley (Hordeum) Tj ETQq0 0 0 ggBT /Overlock 10 Tf