Greg Odorizzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2942284/publications.pdf

Version: 2024-02-01

CDEC ODODIZZI

#	Article	IF	CITATIONS
1	Receptor downregulation and multivesicular-body sorting. Nature Reviews Molecular Cell Biology, 2002, 3, 893-905.	37.0	1,089
2	Fab1p PtdIns(3)P 5-Kinase Function Essential for Protein Sorting in the Multivesicular Body. Cell, 1998, 95, 847-858.	28.9	618
3	The AP-3 Adaptor Complex Is Essential for Cargo-Selective Transport to the Yeast Vacuole. Cell, 1997, 91, 109-118.	28.9	398
4	Mammalian Tumor Susceptibility Gene 101 (TSG101) and the Yeast Homologue, Vps23p, Both Function in Late Endosomal Trafficking. Traffic, 2000, 1, 248-258.	2.7	371
5	Phosphoinositide signaling and the regulation of membrane trafficking in yeast. Trends in Biochemical Sciences, 2000, 25, 229-235.	7.5	303
6	The AP-3 complex: a coat of many colours. Trends in Cell Biology, 1998, 8, 282-288.	7.9	218
7	In Polarized MDCK Cells Basolateral Vesicles Arise from Clathrin-γ-adaptin–coated Domains on Endosomal Tubules. Journal of Cell Biology, 1998, 141, 611-623.	5.2	205
8	The Arabidopsis AAA ATPase SKD1 Is Involved in Multivesicular Endosome Function and Interacts with Its Positive Regulator LYST-INTERACTING PROTEIN5. Plant Cell, 2007, 19, 1295-1312.	6.6	195
9	Bro1 is an endosome-associated protein that functions in the MVB pathway in Saccharomyces cerevisiae. Journal of Cell Science, 2003, 116, 1893-1903.	2.0	189
10	Bro1 coordinates deubiquitination in the multivesicular body pathway by recruiting Doa4 to endosomes. Journal of Cell Biology, 2004, 166, 717-729.	5.2	171
11	Structural Basis for Endosomal Targeting by the Bro1 Domain. Developmental Cell, 2005, 8, 937-947.	7.0	171
12	Get on the exosome bus with ALIX. Nature Cell Biology, 2012, 14, 654-655.	10.3	167
13	The multiple personalities of Alix. Journal of Cell Science, 2006, 119, 3025-3032.	2.0	157
14	Did2 coordinates Vps4-mediated dissociation of ESCRT-III from endosomes. Journal of Cell Biology, 2006, 175, 715-720.	5.2	149
15	Apical and basolateral endosomes of MDCK cells are interconnected and contain a polarized sorting mechanism Journal of Cell Biology, 1996, 135, 139-152.	5.2	131
16	Structural Requirements for Basolateral Sorting of the Human Transferrin Receptor in the Biosynthetic and Endocytic Pathways of Madin-Darby Canine Kidney Cells. Journal of Cell Biology, 1997, 137, 1255-1264.	5.2	120
17	Sorting Mechanisms Regulating Membrane Protein Traffic in the Apical Transcytotic Pathway of Polarized MDCK Cells. Journal of Cell Biology, 1998, 143, 81-94.	5.2	95
18	Molecular mechanisms of late endosome morphology, identity and sorting. Current Opinion in Cell Biology, 2006, 18, 422-428.	5.4	95

GREG ODORIZZI

#	Article	IF	CITATIONS
19	Dual mechanisms specify Doa4-mediated deubiquitination at multivesicular bodies. EMBO Journal, 2007, 26, 2454-2464.	7.8	84
20	A concentric circle model of multivesicular body cargo sorting. EMBO Reports, 2007, 8, 644-650.	4.5	80
21	Direct Binding to Rsp5 Mediates Ubiquitin-independent Sorting of Sna3 via the Multivesicular Body Pathway. Molecular Biology of the Cell, 2007, 18, 697-706.	2.1	79
22	Bro1 binding to Snf7 regulates ESCRT-III membrane scission activity in yeast. Journal of Cell Biology, 2011, 192, 295-306.	5.2	78
23	Regulators of Vps4 ATPase Activity at Endosomes Differentially Influence the Size and Rate of Formation of Intralumenal Vesicles. Molecular Biology of the Cell, 2010, 21, 1023-1032.	2.1	77
24	Fission of SNX-BAR–coated endosomal retrograde transport carriers is promoted by the dynamin-related protein Vps1. Journal of Cell Biology, 2014, 204, 793-806.	5.2	75
25	Class E compartments form in response to ESCRT dysfunction in yeast due to hyperactivity of the Vps21 Rab GTPase. Journal of Cell Science, 2012, 125, 5208-20.	2.0	46
26	Structural Requirements for Major Histocompatibility Complex Class II Invariant Chain Trafficking in Polarized Madin-Darby Canine Kidney Cells. Journal of Biological Chemistry, 1997, 272, 11757-11762.	3.4	31
27	Invertase fusion proteins for analysis of protein trafficking in yeast. Methods in Enzymology, 2000, 327, 95-106.	1.0	30
28	Ubiquitin binding by the CUE domain promotes endosomal localization of the Rab5 GEF Vps9. Molecular Biology of the Cell, 2015, 26, 1345-1356.	2.1	27
29	Genetic interactions with mutations affecting septin assembly reveal ESCRT functions in budding yeast cytokinesis. Biological Chemistry, 2011, 392, 699-712.	2.5	26
30	The balance of protein expression and degradation: an ESCRTs point of view. Current Opinion in Cell Biology, 2013, 25, 489-494.	5.4	26
31	Constitutively active ESCRT-II suppresses the MVB-sorting phenotype of ESCRT-0 and ESCRT-I mutants. Molecular Biology of the Cell, 2015, 26, 554-568.	2.1	21
32	Doa4 function in ILV budding is restricted through its interaction with the Vps20 subunit of ESCRT-III. Journal of Cell Science, 2013, 126, 1881-90.	2.0	19
33	PI(3,5)P ₂ controls vacuole potassium transport to support cellular osmoregulation. Molecular Biology of the Cell, 2018, 29, 1718-1731.	2.1	19
34	Endosomal Na+ (K+)/H+ Exchanger Nhx1/Vps44 Functions Independently and Downstream of Multivesicular Body Formation. Journal of Biological Chemistry, 2011, 286, 44067-44077.	3.4	17
35	Regulation of yeast ESCRT-III membrane scission activity by the Doa4 ubiquitin hydrolase. Molecular Biology of the Cell, 2017, 28, 661-672.	2.1	15
36	Chapter 4 Recombinant Rous Sarcoma Virus Vectors for Avian Cells. Methods in Cell Biology, 1994, 43 Pt A, 79-97.	1.1	11

GREG ODORIZZI

#	Article	IF	CITATIONS
37	Doa4 directly binds Snf7 to inhibit the recruitment of ESCRT-III remodeling factors. Journal of Cell Science, 2020, 133, .	2.0	10
38	Bro1 stimulates Vps4 to promote intralumenal vesicle formation during multivesicular body biogenesis. Journal of Cell Biology, 2021, 220, .	5.2	10
39	Membrane manipulations by the ESCRT machinery. F1000Research, 2015, 4, 516.	1.6	9
40	Vacuolar H+-ATPase dysfunction rescues intralumenal vesicle cargo sorting in yeast lacking PI(3,5)P2 or Doa4. Journal of Cell Science, 2021, 134, .	2.0	7
41	Genetically encoded multimode reporter of adaptor complex 3 traffic in budding yeast. Traffic, 2021, 22, 38-44.	2.7	2
42	Bro1 binds the Vps20 subunit of ESCRTâ€III and promotes ESCRTâ€III regulation by Doa4. Traffic, 2022, 23, 109-119.	2.7	1
43	Correction: Did2 coordinates Vps4-mediated dissociation of ESCRT-III from endosomes. Journal of Cell Biology, 2006, 175, 1043-1043.	5.2	Ο
44	Membranes and organelles. Current Opinion in Cell Biology, 2009, 21, 481-483.	5.4	0
45	ESCRTs Take on a Job in Surveillance. Cell, 2014, 159, 240-241.	28.9	0