Alan Korman Korman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2942180/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tim-3 mediates T cell trogocytosis to limit antitumor immunity. Journal of Clinical Investigation, 2022, 132, .	8.2	25
2	The foundations of immune checkpoint blockade and the ipilimumab approval decennial. Nature Reviews Drug Discovery, 2022, 21, 509-528.	46.4	201
3	Fc-Optimized Anti-CCR8 Antibody Depletes Regulatory T Cells in Human Tumor Models. Cancer Research, 2021, 81, 2983-2994.	0.9	56
4	Antitumor efficacy and reduced toxicity using an anti-CD137 Probody therapeutic. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	24
5	Myeloid Cells Orchestrate Systemic Immunosuppression, Impairing the Efficacy of Immunotherapy against HPV+ Cancers. Cancer Immunology Research, 2020, 8, 131-145.	3.4	21
6	TIGIT blockade enhances functionality of peritoneal NK cells with altered expression of DNAM-1/TIGIT/CD96 checkpoint molecules in ovarian cancer. Oncolmmunology, 2020, 9, 1843247.	4.6	48
7	IL15 Stimulation with TIGIT Blockade Reverses CD155-mediated NK-Cell Dysfunction in Melanoma. Clinical Cancer Research, 2020, 26, 5520-5533.	7.0	88
8	An Integrative Approach to Inform Optimal Administration of OX40 Agonist Antibodies in Patients with Advanced Solid Tumors. Clinical Cancer Research, 2019, 25, 6709-6720.	7.0	32
9	Targeting DDR2 enhances tumor response to anti–PD-1 immunotherapy. Science Advances, 2019, 5, eaav2437.	10.3	92
10	VISTA is an acidic pH-selective ligand for PSGL-1. Nature, 2019, 574, 565-570.	27.8	214
11	Complimentary mechanisms of dual checkpoint blockade expand unique T-cell repertoires and activate adaptive anti-tumor immunity in triple-negative breast tumors. Oncolmmunology, 2018, 7, e1421891.	4.6	57
12	Interleukin-21 combined with PD-1 or CTLA-4 blockade enhances antitumor immunity in mouse tumor models. OncoImmunology, 2018, 7, e1377873.	4.6	43
13	Combining intratumoral Treg depletion with androgen deprivation therapy (ADT): preclinical activity in the Myc-CaP model. Prostate Cancer and Prostatic Diseases, 2018, 21, 113-125.	3.9	46
14	CD226 opposes TIGIT to disrupt Tregs in melanoma. JCI Insight, 2018, 3, .	5.0	137
15	TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity and survival in GBM. Oncolmmunology, 2018, 7, e1466769.	4.6	217
16	Effective Combination of Innate and Adaptive Immunotherapeutic Approaches in a Mouse Melanoma Model. Journal of Immunology, 2017, 198, 1575-1584.	0.8	15
17	Temporally Distinct PD-L1 Expression by Tumor and Host Cells Contributes to Immune Escape. Cancer Immunology Research, 2017, 5, 106-117.	3.4	236
18	Structural basis for cancer immunotherapy by the first-in-class checkpoint inhibitor ipilimumab. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4223-E4232	7.1	121

Alan Korman Korman

#	Article	IF	CITATIONS
19	Masterful Antibodies: Checkpoint Blockade. Cancer Immunology Research, 2017, 5, 275-281.	3.4	31
20	Preclinical Development of Ipilimumab and Nivolumab Combination Immunotherapy: Mouse Tumor Models, In Vitro Functional Studies, and Cynomolgus Macaque Toxicology. PLoS ONE, 2016, 11, e0161779.	2.5	172
21	TIGIT and PD-1 impair tumor antigen–specific CD8+ T cells in melanoma patients. Journal of Clinical Investigation, 2015, 125, 2046-2058.	8.2	603
22	FcÎ ³ Rs Modulate the Anti-tumor Activity of Antibodies Targeting the PD-1/PD-L1 Axis. Cancer Cell, 2015, 28, 285-295.	16.8	291
23	<i>In Vitro</i> Characterization of the Anti-PD-1 Antibody Nivolumab, BMS-936558, and <i>In Vivo</i> Toxicology in Non-Human Primates. Cancer Immunology Research, 2014, 2, 846-856.	3.4	514
24	Nivolumab plus Ipilimumab in Advanced Melanoma. New England Journal of Medicine, 2013, 369, 122-133.	27.0	3,776
25	Anti-CTLA-4 Antibodies of IgG2a Isotype Enhance Antitumor Activity through Reduction of Intratumoral Regulatory T Cells. Cancer Immunology Research, 2013, 1, 32-42.	3.4	726
26	A Randomized, Double-Blind, Placebo-Controlled Assessment of BMS-936558, a Fully Human Monoclonal Antibody to Programmed Death-1 (PD-1), in Patients with Chronic Hepatitis C Virus Infection. PLoS ONE, 2013, 8, e63818.	2.5	204
27	Immune Inhibitory Molecules LAG-3 and PD-1 Synergistically Regulate T-cell Function to Promote Tumoral Immune Escape. Cancer Research, 2012, 72, 917-927.	0.9	1,311
28	Safety, Activity, and Immune Correlates of Anti–PD-1 Antibody in Cancer. New England Journal of Medicine, 2012, 366, 2443-2454.	27.0	10,727
29	Enhanced Tumor Eradication by Combining CTLA-4 or PD-1 Blockade With CpG Therapy. Journal of Immunotherapy, 2010, 33, 225-235.	2.4	171
30	Development of Ipilimumab: Contribution to a New Paradigm for Cancer Immunotherapy. Seminars in Oncology, 2010, 37, 533-546.	2.2	218
31	Phase I Study of Single-Agent Anti–Programmed Death-1 (MDX-1106) in Refractory Solid Tumors: Safety, Clinical Activity, Pharmacodynamics, and Immunologic Correlates. Journal of Clinical Oncology, 2010, 28, 3167-3175.	1.6	2,667
32	Anti–Programmed Death-1 Synergizes with Granulocyte Macrophage Colony-Stimulating Factor–Secreting Tumor Cell Immunotherapy Providing Therapeutic Benefit to Mice with Established Tumors. Clinical Cancer Research, 2009, 15, 1623-1634.	7.0	174
33	Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3005-3010.	7.1	604
34	Checkpoint Blockade in Cancer Immunotherapy. Advances in Immunology, 2006, 90, 297-339.	2.2	498
35	Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4712-4717.	7.1	940