
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2941603/publications.pdf Version: 2024-02-01

IENNIEED MACH

#	Article	IF	CITATIONS
1	The Long-Noncoding RNA ELENA1 Functions in Plant Immunity. Plant Cell, 2017, 29, 916-916.	6.6	30
2	The Cotton Centromere Contains a Ty3-gypsy-like LTR Retroelement. PLoS ONE, 2012, 7, e35261.	2.5	29
3	Alternative Splicing Produces a JAZ Protein That Is Not Broken Down in Response to Jasmonic Acid. Plant Cell, 2009, 21, 14-14.	6.6	16
4	Phytol from Degradation of Chlorophyll Feeds Biosynthesis of Tocopherols. Plant Cell, 2015, 27, tpc.15.00860.	6.6	12
5	Strigolactones Regulate Plant Growth in Arabidopsis via Degradation of the DWARF53-Like Proteins SMXL6, 7, and 8. Plant Cell, 2015, 27, 3022-3023.	6.6	10
6	CONSTANS Companion: CO Binds the NF-YB/NF-YC Dimer and Confers Sequence-Specific DNA Binding. Plant Cell, 2017, 29, 1183-1183.	6.6	10
7	Calcium Channels and Acquired Thermotolerance: Here Comes the Sun and It's All Right. Plant Cell, 2012, 24, 3167-3167.	6.6	8
8	Domesticated versus Wild Rice? Bring It Awn!. Plant Cell, 2015, 27, 1818-1818.	6.6	8
9	Chloroplast RNA Editing by Pentatricopeptide Repeat Proteins. Plant Cell, 2009, 21, 17-17.	6.6	6
10	Unpuréeing the Tomato: Layers of Information Revealed by Microdissection and High-Throughput Transcriptome Sequencing. Plant Cell, 2011, 23, 3868-3868.	6.6	6
11	Geminivirus Vectors Deliver Reagents for Plant Genome Engineering. Plant Cell, 2014, 26, 2-2.	6.6	6
12	Metabolic Crosstalk: Interactions between the Phenylpropanoid and Glucosinolate Pathways in Arabidopsis. Plant Cell, 2015, 27, 1367-1367.	6.6	6
13	Corn ChIPs and RNA-seq: Researchers Dip into Advanced Tools and Resources to Examine bZIP Transcription Factor Function in the Maize Endosperm. Plant Cell, 2018, 30, 2641-2642.	6.6	6
14	Modeling Sugar Metabolism in Tomato Fruit. Plant Cell, 2014, 26, 3222-3223.	6.6	5
15	Plant Cortical Microtubule Arrays: Recruitment Mechanisms in Common with Centrosomes. Plant Cell, 2012, 24, 2-2.	6.6	4
16	Mass Spectrometry Imaging with Single-Cell Resolution: Spatial Distribution of Lipids in Cotton Seeds. Plant Cell, 2012, 24, 371-371.	6.6	4
17	Getting in Shape? Leaves Work It Out with KANADI1. Plant Cell, 2014, 26, 4-4.	6.6	4
18	Phosphorylation and Nuclear Localization of NPR1 in Systemic Acquired Resistance. Plant Cell, 2015, 27, 3291-3291.	6.6	4

#	Article	IF	CITATIONS
19	Ticket to Ride: tRNA-Related Sequences and Systemic Movement of mRNAs. Plant Cell, 2016, 28, 1231-1232.	6.6	4
20	A Tale of Two CENPCs: Centromere Localization of KINETOCHORE NULL2 and CENP-C. Plant Cell, 2017, 29, 2-3.	6.6	4
21	Camelina: A History of Polyploidy, Chromosome Shattering, and Recovery. Plant Cell, 2019, 31, tpc.00754.2019.	6.6	4
22	The Jasmonate Receptor: Protein Modeling and Photoaffinity Labeling Reveal That the CORONATINE INSENSITIVE1 Protein Binds Jasmonoyl-Isoleucine and Coronatine. Plant Cell, 2009, 21, 2192-2192.	6.6	3
23	Rice Axillary Meristem Formation Requires Directional Movement of LAX PANICLE1 Protein. Plant Cell, 2009, 21, 1027-1027.	6.6	3
24	COP9 Signalosome-Regulated Proteolysis: Turning Off Ascorbic Acid Synthesis When the Lights Go Out. Plant Cell, 2013, 25, 359-359.	6.6	3
25	Making Connections: MAC Function in Splicing and MicroRNA Biogenesis. Plant Cell, 2017, 29, 2316-2317.	6.6	3
26	Tracking the Bacterial Type III Secretion System: Visualization of Effector Delivery Using Split Fluorescent Proteins. Plant Cell, 2017, 29, 1547-1548.	6.6	3
27	Free Radicals and Oxidative Stress. , 2004, , 203-214.		2
28	Effector XopD Suppresses Tissue Degeneration in Xanthomonas-Infected Tomato Leaves. Plant Cell, 2008, 20, 1731-1731.	6.6	2
29	Guard Cell Proteome Reveals Signals and Surprises. Plant Cell, 2008, 20, 3185-3185.	6.6	2
30	Beyond the Type Genome: Discovery of Novel Avirulence Genes in the Rice Blast Fungus by Genomic Resequencing and Genetic Association Studies. Plant Cell, 2009, 21, 1325-1325.	6.6	2
31	On the Habits of Transposons: <i>Dissociation</i> Mapping in Maize and Megabase Sequencing in Wheat Reveal Site Preferences, Distribution, and Evolutionary History. Plant Cell, 2010, 22, 1650-1652.	6.6	2
32	Why Wiry? Tomato Mutants Reveal Connections among Small RNAs, Auxin Response Factors, Virus Infection, and Leaf Morphology. Plant Cell, 2012, 24, 3486-3486.	6.6	2
33	A Petunia Twist on the ABC Model of Floral Organ Specification. Plant Cell, 2012, 24, 2237-2237.	6.6	2
34	Lipids in Leaves: Fatty Acid β-Oxidation Affects Lipid Homeostasis. Plant Cell, 2014, 26, 3827-3827.	6.6	2
35	Production of the Non-Protein Amino Acid β-Tyrosine in Rice. Plant Cell, 2015, 27, 949-949.	6.6	2
36	lt Was a Great, Green Year: Identification of a Chlorophyll Dephytylase That Functions in Chlorophyll Turnover. Plant Cell, 2016, 28, 2887-2888.	6.6	2

#	Article	IF	CITATIONS
37	lt's Not Easy Not Being Green: Breakthroughs in Chlorophyll Breakdown. Plant Cell, 2016, 28, 2350-2351.	6.6	2
38	How Plants Take the Bad with the Good: Conserved UV-B Perception and Signaling in Chlamydomonas. Plant Cell, 2016, 28, 825-825.	6.6	2
39	Identification of a Distinct, Cutin-Related Pathway for Biosynthesis of Triacylglycerol Lipids in Bayberry. Plant Cell, 2016, 28, 5-5.	6.6	2
40	So Inclined: Phosphate Status and Leaf Angle in Rice. Plant Cell, 2018, 30, 743-744.	6.6	2
41	In the Histone Zone: The Mighty Eraser. Plant Cell, 2018, 30, 5-6.	6.6	2
42	The Lipase Link: Abscisic Acid Induces PLASTID LIPASES, Which Produce Jasmonic Acid Precursors. Plant Cell, 2018, 30, 948-949.	6.6	2
43	Polyploid Pairing Problems: How Centromere Repeat Divergence Helps Wheat Sort It All Out. Plant Cell, 2019, 31, 1938-1939.	6.6	2
44	Crosstown Trafficking: The Retromer Complex Component VPS29 and Recycling of the Vacuolar Sorting Receptor. Plant Cell, 2012, 24, 4776-4776.	6.6	1
45	No More Free Lunch: Using RNA Interference in the Host to Reduce Growth of a Parasitic Plant. Plant Cell, 2012, 24, 2709-2709.	6.6	1
46	Chlorophyll Breakdown Branches Out: Identification of a Major Catabolic Route Involving Cytochrome P450 CYP89A9. Plant Cell, 2013, 25, 1486-1486.	6.6	1
47	<i>N</i> -Glycosylation of a Chitin Binding Effector Allows a Fungal Pathogen to Evade the Plant Immune Response. Plant Cell, 2014, 26, 844-844.	6.6	1
48	Walk into the Light Response: Direct Targets of Phytochrome A Include Genes That Respond to Light, Stress, and Hormones. Plant Cell, 2014, 26, 1832-1832.	6.6	1
49	When to Hold Them: Retention of Duplicate Genes in Poplar. Plant Cell, 2014, 26, 2283-2283.	6.6	1
50	Orange Carotenoid Protein Quenches Excess Energy and Singlet Oxygen. Plant Cell, 2014, 26, 1380-1380.	6.6	1
51	Boron Transport in Maize. Plant Cell, 2014, 26, 2728-2728.	6.6	1
52	Clarifying the Opaque: Identification of Direct Targets of Maize Opaque2. Plant Cell, 2015, 27, 484-484.	6.6	1
53	Sick as a…Grass? Viral Infection Causes Massive Changes in Alternative Splicing in Brachypodium distachyon. Plant Cell, 2015, 27, 7-7.	6.6	1
54	The Viroid, the Polymerase, and the Transcription Factor: Replication of a Naked, Noncoding RNA Pathogen by Host Proteins. Plant Cell, 2016, 28, 999-1000.	6.6	1

#	Article	IF	CITATIONS
55	Saddle Up, Soybean Seed Pigments: Argonaute5 in Spatially Regulated Silencing of <i>Chalcone Synthase</i> Genes. Plant Cell, 2017, 29, 604-604.	6.6	1
56	A Time to Divide and a Time to Expand: Histone Deacetylases Flip a Gibberellin Oxidase-Mediated Switch in Root Meristem Cells. Plant Cell, 2017, 29, 2082-2083.	6.6	1
57	Nectary Specification in Petunia and Arabidopsis. Plant Cell, 2018, 30, 1949-1949.	6.6	1
58	Questions about Coenzyme Q? A New Genetic/Metabolic Study Has Answers. Plant Cell, 2018, 30, 2887-2888.	6.6	1
59	Inhibition of TOR, Nitrogen Assimilation, and Amino Acid Biosynthesis: Lessons from Chlamydomonas. Plant Cell, 2018, 30, 2231-2232.	6.6	1
60	Fear Not the Unknown: OPENER as a Study in Shedding Light on Genes with Unknown Function. Plant Cell, 2019, 31, 1420-1420.	6.6	1
61	Collinear Chromosomes and Shifting Centromeres in the Arabideae. Plant Cell, 2020, 32, 534-535.	6.6	1
62	<i>Phytophthora infestans</i> RXLR effectors target vesicle trafficking. Plant Cell, 2021, 33, 1401-1402.	6.6	1
63	Newly Isolated Circadian Clock Components Conserved across Eukaryotes. Plant Cell, 2008, 20, 1187-1187.	6.6	0
64	Loss of an Exosome Complex Component Potentiates R Gene–Independent Cell Death in Barley. Plant Cell, 2009, 21, 2986-2986.	6.6	0
65	Flipping the Centromere Switch: Reactivation of a Dormant Centromere in Maize. Plant Cell, 2009, 21, 1876-1876.	6.6	0
66	A Shot in the Dark: How Parasitic Plants Find Host Roots. Plant Cell, 2010, 22, 995-995.	6.6	0
67	Retrotransposon Domain Swapping. Plant Cell, 2010, 22, 2-2.	6.6	0
68	Copper Transport and Bacterial Pathogenesis in Rice. Plant Cell, 2010, 22, 2923-2923.	6.6	0
69	Rapid Centromere Evolution in Potato: Invasion of the Satellite Repeats. Plant Cell, 2012, 24, 3487-3487.	6.6	0
70	Special Delivery: In Vitro Functional Examination of the Twin-Arginine Transport Complex Core Component cpTatC. Plant Cell, 2013, 25, 778-778.	6.6	0
71	Advice to the Lovelorn Polyploid Plant. Plant Cell, 2014, 26, 3470-3470.	6.6	0
72	DNA Methylation in Maize: Toto, l've a Feeling We're Not in Arabidopsis Anymore. Plant Cell, 2014, 26, 4565-4565.	6.6	0

#	Article	IF	CITATIONS
73	True Love or Just a Surface Charge? FLOWERING LOCUS T Helps Arabidopsis Say It with Flowers. Plant Cell, 2014, 26, 518-518.	6.6	0
74	Twice as NCC: Two Octotricopeptide Repeat Proteins and the Regulation of Chloroplast Gene Expression. Plant Cell, 2015, 27, 947-947.	6.6	0
75	Arabidopsis QTLs Associated with Reduction of Fertility in Response to Heat Stress. Plant Cell, 2015, 27, 1817-1817.	6.6	0
76	A Sleep Like Death: Identification of Genes Related to Seed Longevity inMedicago truncatulaand Arabidopsis. Plant Cell, 2015, 27, 2671-2671.	6.6	0
77	Rice MULEs Transpose in Yeast. Plant Cell, 2015, 27, 5-6.	6.6	0
78	Phytochromes in Diatoms: Sensing Far-Red Light in the Deep Blue Sea. Plant Cell, 2016, 28, 599-600.	6.6	0
79	Examination of Protein Complexes Gets SiMPull. Plant Cell, 2016, 28, 1755-1756.	6.6	0
80	Swept Away: Protein Mobility in the Phloem. Plant Cell, 2016, 28, 1990-1991.	6.6	0
81	A Histone Chaperone and a Specific Transcription Factor Modulate GLABRA2 Expression in Root Hair Development. Plant Cell, 2017, 29, 197-198.	6.6	0
82	Meristem Doming and the Transition to Reproductive Development in Tomato. Plant Cell, 2017, 29, 603-603.	6.6	0
83	Thrown for a Loop: How RNase H1 and DNA Gyrases Limit R-Loops and Maintain Genome Stability in Chloroplasts. Plant Cell, 2017, 29, 2311-2312.	6.6	0
84	Granting an Extension: Phosphorylation of the Pol II CTD Regulates mRNAs Produced by Read-Through from Small Nuclear RNAs. Plant Cell, 2017, 29, 2957-2958.	6.6	0
85	Disarming the Assassins within: Plant Cells Use S-Nitrosylation to Deactivate the HopAI1 Effector. Plant Cell, 2017, 29, 2683-2684.	6.6	0
86	Crossover Guard: MEICA1 Prevents Meiotic Mishaps. Plant Cell, 2017, 29, 1554-1554.	6.6	0
87	The Real Yield Deal? Nitrate Transporter Expression Boosts Yield and Accelerates Maturation. Plant Cell, 2018, 30, 520-521.	6.6	0
88	Escape from Centromere Land. Plant Cell, 2018, 30, 1661-1662.	6.6	0
89	Axis of Algae: Disruption of Basal Cell Fates in the Brown Alga Ectocarpus. Plant Cell, 2018, 30, 3-4.	6.6	0
90	Looking Over Allopolyploid Clover. Plant Cell, 2019, 31, 1421-1422.	6.6	0

#	Article	IF	CITATIONS
91	A defect in the PINOID serine/threonine kinase affects leaf shape in cucumber. Journal of Integrative Plant Biology, 2019, 61, 966-967.	8.5	0
92	tyRNA Bubbles: Extracellular Vesicles Carry 10–15-Nucleotide Small RNAs and Specific Groups of MicroRNAs. Plant Cell, 2019, 31, 558-558.	6.6	0
93	Meiocyte-specific Small RNAs and Meiotic Recombination: Questions and Anthers. Plant Cell, 2019, 31, 276-277.	6.6	0
94	ADP Ribosylation: The Modification Causing a Disease Resistance Sensation. Plant Cell, 2019, 31, tpc.00794.2019.	6.6	0
95	Copious cucurbits coming up! Function of the <i>Female</i> locus in cucumber gynoecy. Plant Cell, 2021, 33, 173-174.	6.6	0