## Megan Nicole McClean

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2941532/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Signal processing by the HOG MAP kinase pathway. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7165-7170.                                                                               | 7.1  | 236       |
| 2  | Severe osmotic compression triggers a slowdown of intracellular signaling, which can be explained<br>by molecular crowding. Proceedings of the National Academy of Sciences of the United States of<br>America, 2013, 110, 5725-5730. | 7.1  | 176       |
| 3  | Cross-talk and decision making in MAP kinase pathways. Nature Genetics, 2007, 39, 409-414.                                                                                                                                            | 21.4 | 134       |
| 4  | Fast-acting and nearly gratuitous induction of gene expression and protein depletion<br>in <i>Saccharomyces cerevisiae</i> . Molecular Biology of the Cell, 2011, 22, 4447-4459.                                                      | 2.1  | 120       |
| 5  | Single-cell RNA sequencing reveals intrinsic and extrinsic regulatory heterogeneity in yeast responding to stress. PLoS Biology, 2017, 15, e2004050.                                                                                  | 5.6  | 118       |
| 6  | Real-time optogenetic control of intracellular protein concentration in microbial cell cultures.<br>Integrative Biology (United Kingdom), 2014, 6, 366.                                                                               | 1.3  | 68        |
| 7  | Noise and interlocking signaling pathways promote distinct transcription factor dynamics in response to different stresses. Molecular Biology of the Cell, 2013, 24, 2045-2057.                                                       | 2.1  | 66        |
| 8  | A yeast optogenetic toolkit (yOTK) for gene expression control in <i>Saccharomyces cerevisiae</i> .<br>Biotechnology and Bioengineering, 2020, 117, 886-893.                                                                          | 3.3  | 38        |
| 9  | Under oil open-channel microfluidics empowered by exclusive liquid repellency. Science Advances, 2020, 6, eaay9919.                                                                                                                   | 10.3 | 34        |
| 10 | A New System for Comparative Functional Genomics of <i>Saccharomyces</i> Yeasts. Genetics, 2013, 195, 275-287.                                                                                                                        | 2.9  | 27        |
| 11 | The Dynamical Systems Properties of the HOG Signaling Cascade. Journal of Signal Transduction, 2011, 2011, 1-12.                                                                                                                      | 2.0  | 22        |
| 12 | Visualization and Analysis of mRNA Molecules Using Fluorescence <em>In Situ</em><br>Hybridization in <em>Saccharomyces cerevisiae</em> . Journal of Visualized Experiments,<br>2013, , e50382.                                        | 0.3  | 17        |
| 13 | Optogenetic Repressors of Gene Expression in Yeasts Using Light-Controlled Nuclear Localization.<br>Cellular and Molecular Bioengineering, 2019, 12, 511-528.                                                                         | 2.1  | 16        |
| 14 | Biological signal generators: integrating synthetic biology tools and in silico control. Current<br>Opinion in Systems Biology, 2019, 14, 58-65.                                                                                      | 2.6  | 14        |
| 15 | Robust network structure of the Sln1-Ypd1-Ssk1 three-component phospho-relay prevents unintended activation of the HOG MAPK pathway in Saccharomyces cerevisiae. BMC Systems Biology, 2015, 9, 17.                                    | 3.0  | 13        |
| 16 | Easy calibration of the Light Plate Apparatus for optogenetic experiments. MethodsX, 2019, 6, 1480-1488.                                                                                                                              | 1.6  | 11        |
| 17 | Automated calibration of optoPlate LEDs to reduce light dose variation in optogenetic experiments.<br>BioTechniques, 2020, 69, 313-316.                                                                                               | 1.8  | 10        |
| 18 | Optogenetic Tools for Control of Public Goods in Saccharomyces cerevisiae. MSphere, 2021, 6, e0058121.                                                                                                                                | 2.9  | 10        |

2

| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | In vivo measurement of signaling cascade dynamics. Cell Cycle, 2009, 8, 373-376.                                                                                                          | 2.6  | 7         |
| 20 | Design and Implementation of an Automated Illuminating, Culturing, and Sampling System for<br>Microbial Optogenetic Applications. Journal of Visualized Experiments, 2017, , .            | 0.3  | 7         |
| 21 | Measuring In Vivo Signaling Kinetics in a Mitogen-Activated Kinase Pathway Using Dynamic Input<br>Stimulation. Methods in Molecular Biology, 2011, 734, 101-119.                          | 0.9  | 5         |
| 22 | Engineered bacteria self-organize to sense pressure. Nature Biotechnology, 2017, 35, 1045-1047.                                                                                           | 17.5 | 4         |
| 23 | Design and implementation of a microfluidic device capable of temporal growth factor delivery reveal filtering capabilities of the EGFR/ERK pathway. APL Bioengineering, 2021, 5, 046101. | 6.2  | 4         |
| 24 | Secrete to beat the heat. Nature Microbiology, 2020, 5, 883-884.                                                                                                                          | 13.3 | 3         |
| 25 | Microfluidic Platforms for Generating Dynamic Environmental Perturbations to Study the Responses of Single Yeast Cells. Methods in Molecular Biology, 2014, 1205, 111-129.                | 0.9  | 2         |
| 26 | A Microfluidic Device for Imaging Samples from Microbial Suspension Cultures. MethodsX, 2020, 7,<br>100891.                                                                               | 1.6  | 2         |
| 27 | Shining light on molecular communication. , 2020, 2020, .                                                                                                                                 |      | 1         |
| 28 | Give and take in the exometabolome. Nature Microbiology, 2022, 7, 484-485.                                                                                                                | 13.3 | 0         |
| 29 | Evaluation of Benzinger etÂal.: Optogenetic circuits for dynamic signal processing. Cell Systems, 2022, 13, 347-348                                                                       | 6.2  | 0         |