Patrik Ernfors

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2941000/publications.pdf

Version: 2024-02-01

87 papers 14,478 citations

45 h-index 51608 86 g-index

94 all docs 94 docs citations

times ranked

94

17765 citing authors

#	Article	IF	CITATIONS
1	The SARS-CoV-2 receptor ACE2 is expressed in mouse pericytes but not endothelial cells: Implications for COVID-19 vascular research. Stem Cell Reports, 2022, 17, 1089-1104.	4.8	41
2	Identification and quantification of nociceptive Schwann cells in mice with and without Streptozotocin-induced diabetes. Journal of Chemical Neuroanatomy, 2022, 123, 102118.	2.1	3
3	Neural network learning defines glioblastoma features to be of neural crest perivascular or radial glia lineages. Science Advances, 2022, 8, .	10.3	11
4	Diversification of molecularly defined myenteric neuron classes revealed by single-cell RNA sequencing. Nature Neuroscience, 2021, 24, 34-46.	14.8	151
5	Single cell transcriptomics of primate sensory neurons identifies cell types associated with chronic pain. Nature Communications, 2021, 12, 1510.	12.8	121
6	Single-cell RNA sequencing reveals the mesangial identity and species diversity of glomerular cell transcriptomes. Nature Communications, 2021, 12, 2141.	12.8	55
7	Demise of nociceptive Schwann cells causes nerve retraction and pain hyperalgesia. Pain, 2021, 162, 1816-1827.	4.2	40
8	Glioblastoma cytotoxicity conferred through dual disruption of endolysosomal homeostasis by Vacquinol-1. Neuro-Oncology Advances, 2021, 3, vdab152.	0.7	1
9	Contribution of neural crest and GLAST ⁺ Wnt1 ⁺ bone marrow pericytes with liver fibrogenesis and/or regeneration. Liver International, 2020, 40, 977-987.	3.9	7
10	Human Labor Pain Is Influenced by the Voltage-Gated Potassium Channel KV6.4 Subunit. Cell Reports, 2020, 32, 107941.	6.4	18
11	Pricking into Autonomic Reflex Pathways by Electrical Acupuncture. Neuron, 2020, 108, 395-397.	8.1	3
12	Specialized cutaneous Schwann cells initiate pain sensation. Science, 2019, 365, 695-699.	12.6	231
13	Schwann Cell Precursors Generate the Majority of Chromaffin Cells in Zuckerkandl Organ and Some Sympathetic Neurons in Paraganglia. Frontiers in Molecular Neuroscience, 2019, 12, 6.	2.9	65
14	Spatiotemporal structure of cell fate decisions in murine neural crest. Science, 2019, 364, .	12.6	345
15	An Atlas of Vagal Sensory Neurons and Their Molecular Specialization. Cell Reports, 2019, 27, 2508-2523.e4.	6.4	259
16	PAD2-Mediated Citrullination Contributes to Efficient Oligodendrocyte Differentiation and Myelination. Cell Reports, 2019, 27, 1090-1102.e10.	6.4	59
17	PRDM12 Is Required for Initiation of the Nociceptive Neuron Lineage during Neurogenesis. Cell Reports, 2019, 26, 3484-3492.e4.	6.4	40
18	Nerves Do It Again: Donation of Mesenchymal Cells for Tissue Regeneration. Cell Stem Cell, 2019, 24, 195-197.	11.1	7

#	Article	IF	CITATIONS
19	Muscle-selective RUNX3 dependence of sensorimotor circuit development. Development (Cambridge), 2019, 146, .	2.5	15
20	Neuronal atlas of the dorsal horn defines its architecture and links sensory input to transcriptional cell types. Nature Neuroscience, 2018, 21, 869-880.	14.8	327
21	Striking parallels between carotid body glomus cell and adrenal chromaffin cell development. Developmental Biology, 2018, 444, S308-S324.	2.0	22
22	Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage. ELife, 2018, 7, .	6.0	28
23	Molecular Architecture of the Mouse Nervous System. Cell, 2018, 174, 999-1014.e22.	28.9	2,002
24	UHRF1 Licensed Self-Renewal of Active Adult Neural Stem Cells. Stem Cells, 2018, 36, 1736-1751.	3.2	14
25	Termination of cell-type specification gene programs by miR-183 cluster determines the population sizes of low threshold mechanosensitive neurons. Development (Cambridge), 2018, 145, .	2.5	8
26	NoRC Recruitment by H2A.X Deposition at rRNA Gene Promoter Limits Embryonic Stem Cell Proliferation. Cell Reports, 2018, 23, 1853-1866.	6.4	19
27	Ca2+-binding protein NECAB2 facilitates inflammatory pain hypersensitivity. Journal of Clinical Investigation, 2018, 128, 3757-3768.	8.2	15
28	Evaluating vacquinol-1 in rats carrying glioblastoma models RG2 and NS1. Oncotarget, 2018, 9, 8391-8399.	1.8	9
29	miR-183 cluster scales mechanical pain sensitivity by regulating basal and neuropathic pain genes. Science, 2017, 356, 1168-1171.	12.6	124
30	Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science, 2017, 357, .	12.6	251
31	The Oncolytic Efficacy and in Vivo Pharmacokinetics of [2-(4-Chlorophenyl)quinolin-4-yl](piperidine-2-yl)methanol (Vacquinol-1) Are Governed by Distinct Stereochemical Features. Journal of Medicinal Chemistry, 2016, 59, 8577-8592.	6.4	16
32	Visceral motor neuron diversity delineates a cellular basis for nipple- and pilo-erection muscle control. Nature Neuroscience, 2016, 19, 1331-1340.	14.8	91
33	Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science, 2016, 352, 1326-1329.	12.6	817
34	New origin firing is inhibited by APC/C ^{Cdh1} activation in S-phase after severe replication stress. Nucleic Acids Research, 2016, 44, 4745-4762.	14.5	15
35	Mutations in the Endothelin Receptor Type A Cause Mandibulofacial Dysostosis with Alopecia. American Journal of Human Genetics, 2015, 96, 519-531.	6.2	47
36	Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nature Neuroscience, 2015, 18, 145-153.	14.8	1,710

#	Article	IF	Citations
37	Nerves transport stem-like cells generating parasympathetic neurons. Cell Cycle, 2014, 13, 2805-2806.	2.6	2
38	Identification of a large protein network involved in epigenetic transmission in replicating DNA of embryonic stem cells. Nucleic Acids Research, 2014, 42, 6972-6986.	14.5	42
39	Glial origin of mesenchymal stem cells in a tooth model system. Nature, 2014, 513, 551-554.	27.8	347
40	Parasympathetic neurons originate from nerve-associated peripheral glial progenitors. Science, 2014, 345, 82-87.	12.6	181
41	The transcription factor Hmx1 and growth factor receptor activities control sympathetic neurons diversification. EMBO Journal, 2013, 32, 1613-1625.	7.8	45
42	Sox2 and Mitf cross-regulatory interactions consolidate progenitor and melanocyte lineages in the cranial neural crest. Development (Cambridge), 2012, 139, 397-410.	2.5	154
43	Molecular interactions underlying the specification of sensory neurons. Trends in Neurosciences, 2012, 35, 373-381.	8.6	226
44	Small molecule screening platform for assessment of cardiovascular toxicity on adult zebrafish heart. BMC Physiology, 2012, 12, 3.	3.6	27
45	Essential role of Ret for defining non-peptidergic nociceptor phenotypes and functions in the adult mouse. European Journal of Neuroscience, 2011, 33, 1385-1400.	2.6	28
46	Dependence on the transcription factor Shox2 for specification of sensory neurons conveying discriminative touch. European Journal of Neuroscience, 2011, 34, 1529-1541.	2.6	33
47	Cell cycle restriction by histone H2AX limits proliferation of adult neural stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5837-5842.	7.1	127
48	Cellular origin and developmental mechanisms during the formation of skin melanocytes. Experimental Cell Research, 2010, 316, 1397-1407.	2.6	67
49	En masse in vitro functional profiling of the axonal mechanosensitivity of sensory neurons. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16336-16341.	7.1	14
50	Dynamic expression of the TRPM subgroup of ion channels in developing mouse sensory neurons. Gene Expression Patterns, 2010, 10, 65-74.	0.8	49
51	Schwann Cell Precursors from Nerve Innervation Are a Cellular Origin of Melanocytes in Skin. Cell, 2009, 139, 366-379.	28.9	477
52	Differential regulation of TRP channels in a rat model of neuropathic pain. Pain, 2009, 144, 187-199.	4.2	105
53	Down regulation of TRPC1 by shRNA reduces mechanosensitivity in mouse dorsal root ganglion neurons in vitro. Neuroscience Letters, 2009, 457, 3-7.	2.1	29
54	Cell migration by a FRS2â€adaptor dependent membrane relocation of ret receptors. Journal of Cellular Biochemistry, 2008, 104, 879-894.	2.6	4

#	Article	IF	Citations
55	Differential membrane compartmentalization of Ret by PTBâ€adaptor engagement. FEBS Journal, 2008, 275, 2055-2066.	4.7	5
56	Histone H2AX-dependent GABAA receptor regulation of stem cell proliferation. Nature, 2008, 451, 460-464.	27.8	255
57	Optimized mouse ES cell culture system by suspension growth in a fully defined medium. Nature Protocols, 2008, 3, 1013-1017.	12.0	19
58	Differential expression and dynamic changes of murine NEDD9 in progenitor cells of diverse tissues. Gene Expression Patterns, 2008, 8, 217-226.	0.8	17
59	Mouse Embryonic Stem Cell-Derived Spheres with Distinct Neurogenic Potentials. Stem Cells and Development, 2008, 17, 233-243.	2.1	29
60	Cellular subtype distribution and developmental regulation of TRPC channel members in the mouse dorsal root ganglion. Journal of Comparative Neurology, 2007, 503, 35-46.	1.6	77
61	Specification and connectivity of neuronal subtypes in the sensory lineage. Nature Reviews Neuroscience, 2007, 8, 114-127.	10.2	330
62	In vitro and in vivo differentiation of boundary cap neural crest stem cells into mature Schwann cells. Experimental Neurology, 2006, 198, 438-449.	4.1	100
63	The Runx1/AML1 transcription factor selectively regulates development and survival of TrkA nociceptive sensory neurons. Nature Neuroscience, 2006, 9, 180-187.	14.8	117
64	Brain-derived neurotrophic factor selectively regulates dendritogenesis of parvalbumin-containing interneurons in the main olfactory bulb through the PLCÎ ³ pathway. Journal of Neurobiology, 2006, 66, 1437-1451.	3.6	44
65	Engineering the Recruitment of Phosphotyrosine Binding Domain-containing Adaptor Proteins Reveals Distinct Roles for RET Receptor-mediated Cell Survival. Journal of Biological Chemistry, 2006, 281, 29886-29896.	3.4	15
66	The boundary cap: a source of neural crest stem cells that generate multiple sensory neuron subtypes. Development (Cambridge), 2005, 132, 2623-2632.	2.5	112
67	Endocannabinoids regulate interneuron migration and morphogenesis by transactivating the TrkB receptor. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 19115-19120.	7.1	251
68	Brain-derived neurotrophic factor controls functional differentiation and microcircuit formation of selectively isolated fast-spiking GABAergic interneurons. European Journal of Neuroscience, 2004, 20, 1290-1306.	2.6	88
69	Complementary distribution of typeâ \in f1 cannabinoid receptors and vesicular glutamate transporterâ \in f3 in basal forebrain suggests inputâ \in specific retrograde signalling by cholinergic neurons. European Journal of Neuroscience, 2003, 18, 1979-1992.	2.6	69
70	BDNF gene replacement reveals multiple mechanisms for establishing neurotrophin specificity during sensory nervous system development. Development (Cambridge), 2003, 130, 1479-1491.	2.5	103
71	Differential influence of BDNF and NT3 on the expression of calcium binding proteins and neuropeptide Y in vivo. NeuroReport, 2003, 14, 2183-2187.	1.2	20
72	Distinct roles of the Y1 and Y2 receptors on neuropeptide Y-induced sensitization to sedation. Journal of Neurochemistry, 2001, 78, 1201-1207.	3.9	40

#	Article	IF	CITATIONS
73	Neuropeptide Y alters sedation through a hypothalamic Y1-mediated mechanism. European Journal of Neuroscience, 2001, 13, 2241-2246.	2.6	52
74	Nuclear Factor- $\hat{\mathbb{P}}$ b to the Rescue of Cytokine-Induced Neuronal Survival. Journal of Cell Biology, 2000, 148, 223-226.	5.2	10
75	Cell death in regenerating populations of neurons in BDNF mutant mice. Molecular Brain Research, 2000, 75, 61-69.	2.3	112
76	Normal feeding behavior, body weight and leptin response require the neuropeptide YY2 receptor. Nature Medicine, 1999, 5 , $1188-1193$.	30.7	261
77	Protection of auditory neurons from aminoglycoside toxicity by neurotrophin-3. Nature Medicine, 1996, 2, 463-467.	30.7	251
78	Aminoglycoside excitement silences hearing. Nature Medicine, 1996, 2, 1313-1314.	30.7	16
79	Neurotrophic Factors as Pharmacological Agents for the Treatment of Injured Auditory Neurons. Novartis Foundation Symposium, 1996, 196, 149-166.	1.1	4
80	Dependence of developing group la afferents on neurotrophin-3. Journal of Comparative Neurology, 1995, 363, 307-320.	1.6	98
81	Sensory but not motor neuron deficits in mice lacking NT4 and BDNF. Nature, 1995, 375, 238-241.	27.8	357
82	Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature, 1994, 368, 147-150.	27.8	1,023
83	Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents. Cell, 1994, 77, 503-512.	28.9	767
84	Cells Expressing mRNA for Neurotrophins and their Receptors During Embryonic Rat Development. European Journal of Neuroscience, 1992, 4, 1140-1158.	2.6	479
85	Septal cholinergic afferents regulate expression of brain-derived neurotrophic factor and \hat{l}^2 -nerve growth factor mRNA in rat hippocampus. Experimental Brain Research, 1992, 88, 78-90.	1.5	123
86	Developmentally Regulated Expression of HDNF/NT-3 mRNA in Rat Spinal Cord Motoneurons and Expression of BDNF mRNA in Embryonic Dorsal Root Ganglion. European Journal of Neuroscience, 1991, 3, 953-961.	2.6	145
87	Dorsal Root Ganglion Neuron Types and Their Functional Specialization. , 0, , 128-155.		24