Jing-Wei Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2938894/publications.pdf

Version: 2024-02-01

27 3,096 16
papers citations h-index

16 26
h-index g-index

27 27 all docs citations

27 times ranked 5019 citing authors

#	Article	IF	CITATIONS
1	Restoring nuclear entry of Sirtuin 2 in oligodendrocyte progenitor cells promotes remyelination during ageing. Nature Communications, 2022, 13, 1225.	12.8	27
2	Inhibition of RIPK1 by ZJU-37 promotes oligodendrocyte progenitor proliferation and remyelination via NF-Î [®] B pathway. Cell Death Discovery, 2022, 8, 147.	4.7	4
3	Impaired metabolism of oligodendrocyte progenitor cells and axons in demyelinated lesion and in the aged CNS. Current Opinion in Pharmacology, 2022, 64, 102205.	3.5	9
4	Loss of Growth Differentiation Factor 11 Shortens Telomere Length by Downregulating Telomerase Activity. Frontiers in Physiology, 2021, 12, 726345.	2.8	3
5	Neutralization of Hv1/HVCN1 With Antibody Enhances Microglia/Macrophages Myelin Clearance by Promoting Their Migration in the Brain. Frontiers in Cellular Neuroscience, 2021, 15, 768059.	3.7	7
6	Frontiers of electron microscopy for biomedical research. Scientia Sinica Vitae, 2020, 50, 1176-1191.	0.3	0
7	Selective Activation of Basal Forebrain Cholinergic Neurons Attenuates Polymicrobial Sepsis–Induced Inflammation via the Cholinergic Anti-Inflammatory Pathway. Critical Care Medicine, 2017, 45, e1075-e1082.	0.9	25
8	Expression and cellular localization of hepcidin mRNA and protein in normal rat brain. BMC Neuroscience, 2015, 16, 24.	1.9	57
9	Modelling of a targeted nanotherapeutic †stroma' to deliver the cytokine LIF, or XAV939, a potent inhibitor of Wnt†1²-catenin signalling, for use in human fetal dopaminergic grafts in Parkinson's disease. DMM Disease Models and Mechanisms, 2014, 7, 1193-203.	2.4	16
10	M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nature Neuroscience, 2013, 16, 1211-1218.	14.8	1,357
11	The late response of rat subependymal zone stem and progenitor cells to stroke is restricted to directly affected areas of their niche. Experimental Neurology, 2013, 248, 387-397.	4.1	23
12	MFG-E8 Mediates Primary Phagocytosis of Viable Neurons during Neuroinflammation. Journal of Neuroscience, 2012, 32, 2657-2666.	3 . 6	189
13	Rejuvenation of Regeneration in the Aging Central Nervous System. Cell Stem Cell, 2012, 10, 96-103.	11.1	552
14	Inhibition of Microglial Phagocytosis Is Sufficient To Prevent Inflammatory Neuronal Death. Journal of Immunology, 2011, 186, 4973-4983.	0.8	331
15	Astrocytes and oligodendrocytes can be generated from NG2 ⁺ progenitors after acute brain injury: intracellular localization of oligodendrocyte transcription factor 2 is associated with their fate choice. European Journal of Neuroscience, 2009, 29, 1853-1869.	2.6	72
16	An efficient method for derivation and propagation of glioblastoma cell lines that conserves the molecular profile of their original tumours. Journal of Neuroscience Methods, 2009, 176, 192-199.	2. 5	143
17	The role of anxiety in the development of levodopa-induced dyskinesias in an animal model of Parkinson's disease, and the effect of chronic treatment with the selective serotonin reuptake inhibitor citalopram. Psychopharmacology, 2008, 197, 279-293.	3.1	40
18	Functional GABAB receptors are expressed at the cone photoreceptor terminals in bullfrog retina. Neuroscience, 2005, 132, 103-113.	2.3	9

#	Article	IF	CITATIONS
19	Inwardly rectifying potassium channels in rat retinal ganglion cells. European Journal of Neuroscience, 2004, 20, 956-964.	2.6	43
20	Expression of natriuretic peptides in rat Müller cells. Neuroscience Letters, 2004, 365, 176-179.	2.1	16
21	GLAST expression on bullfrog Mýller cells is regulated by dark/light. NeuroReport, 2004, 15, 2451-2454.	1.2	3
22	Expression patterns of inwardly rectifying potassium channel subunits in rat retina. Neuroscience Letters, 2003, 345, 9-12.	2.1	15
23	Cholinergic and dopaminergic amacrine cells differentially express calcium channel subunits in the rat retina. Neuroscience, 2003, $118,763-768$.	2.3	32
24	Voltage-gated K+channel subunits on cholinergic and dopaminergic amacrine cells. NeuroReport, 2003, 14, 1763-1766.	1.2	9
25	Expression of voltage-dependent calcium channel subunits in the rat retina. Neuroscience Letters, 2002, 329, 297-300.	2.1	65
26	Glutamate transporter EAAC1 is expressed on MÃ $\frac{1}{4}$ ller cells of lower vertebrate retinas. Journal of Neuroscience Research, 2001, 66, 89-95.	2.9	20
27	Expression of GABA transporters on bullfrog retinal M�ller cells. Glia, 2000, 31, 104-117.	4.9	29