Ofer Lahav

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2938385/publications.pdf

Version: 2024-02-01

410 papers 40,635 citations

93 h-index 189 g-index

414 all docs

414 docs citations

times ranked

414

20549 citing authors

#	Article	IF	CITATIONS
1	Dark Energy Survey Year 3 Results: Measuring the Survey Transfer Function with Balrog. Astrophysical Journal, Supplement Series, 2022, 258, 15.	3.0	21
2	Dark Energy Survey Year 3 results: marginalization over redshift distribution uncertainties using ranking of discrete realizations. Monthly Notices of the Royal Astronomical Society, 2022, 511, 2170-2185.	1.6	18
3	Dark energy survey year 3 results: Cosmology with peaks using an emulator approach. Monthly Notices of the Royal Astronomical Society, 2022, 511, 2075-2104.	1.6	34
4	A Search of the Full Six Years of the Dark Energy Survey for Outer Solar System Objects. Astrophysical Journal, Supplement Series, 2022, 258, 41.	3.0	27
5	Explaining deep learning of galaxy morphology with saliency mapping. Monthly Notices of the Royal Astronomical Society, 2022, 511, 5032-5041.	1.6	5
6	Deep learning methods for obtaining photometric redshift estimations from images. Monthly Notices of the Royal Astronomical Society, 2022, 512, 1696-1709.	1.6	10
7	The Dark Energy Survey Bright Arcs Survey: Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey 5000 Square Degree Footprint. Astrophysical Journal, Supplement Series, 2022, 259, 27.	3.0	4
8	The Observed Evolution of the Stellar Mass–Halo Mass Relation for Brightest Central Galaxies. Astrophysical Journal, 2022, 928, 28.	1.6	11
9	Finding quadruply imaged quasars with machine learning – I. Methods. Monthly Notices of the Royal Astronomical Society, 2022, 513, 2407-2421.	1.6	9
10	SOAR/Goodman Spectroscopic Assessment of Candidate Counterparts of the LIGO/Virgo Event GW190814*. Astrophysical Journal, 2022, 929, 115.	1.6	9
11	Cosmology and neutrino mass with the minimum spanning tree. Monthly Notices of the Royal Astronomical Society, 2022, 513, 3596-3609.	1.6	10
12	The Dark Energy Survey supernova program: cosmological biases from supernova photometric classification. Monthly Notices of the Royal Astronomical Society, 2022, 518, 1106-1127.	1.6	7
13	Weak-lensing magnification of Type Ia supernovae from the Pantheon sample. Monthly Notices of the Royal Astronomical Society, 2022, 515, 2305-2321.	1.6	1
14	The dark energy survey 5-yr photometrically identified type Ia supernovae. Monthly Notices of the Royal Astronomical Society, 2022, 514, 5159-5177.	1.6	8
15	Cross-correlation of Dark Energy Survey Year 3 lensing data with ACT and <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>P</mml:mi><mml:mi> <mml:mi> <mml:mi< <mml:mi> <mml:mi> <mml:mi> <mml:mi> <mml:mi> <mml:mi> <mml:mi< <mml:mi> <mml:mi> <mml:mi< <mml:mi> <mml:mi< <m< td=""><td>i>a<¢mml:</td><td>mi21:mi></td></mml:mi< <mml:mi< <m<></mml:mi< <mml:mi></mml:mi></mml:mi< <mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi< <mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:math>	i>a<¢mml:	m i2 1:mi>
16	Velocity dispersions of clusters in the Dark Energy Survey Y3 redMaPPer catalogue. Monthly Notices of the Royal Astronomical Society, 2022, 514, 4696-4717.	1.6	3
17	Milky Way Satellite Census. IV. Constraints on Decaying Dark Matter from Observations of Milky Way Satellite Galaxies. Astrophysical Journal, 2022, 932, 128.	1.6	16
18	Dark energy survey year 3 results: cosmological constraints from the analysis of cosmic shear in harmonic space. Monthly Notices of the Royal Astronomical Society, 2022, 515, 1942-1972.	1.6	27

#	Article	IF	Citations
19	A machine learning approach to galaxy properties: joint redshift–stellar mass probability distributions with Random Forest. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2770-2786.	1.6	19
20	Sum of the masses of the MilkyÂWay and M31: A likelihood-free inference approach. Physical Review D, 2021, 103, .	1.6	19
21	Dark energy survey internal consistency tests of the joint cosmological probes analysis with posterior predictive distributions. Monthly Notices of the Royal Astronomical Society, 2021, 503, 2688-2705.	1.6	20
22	Dark energy survey year 1 results: Constraining baryonic physics in the Universe. Monthly Notices of the Royal Astronomical Society, 2021, 502, 6010-6031.	1.6	27
23	The WaZP galaxy cluster sample of the dark energy survey year 1. Monthly Notices of the Royal Astronomical Society, 2021, 502, 4435-4456.	1.6	15
24	The Atacama Cosmology Telescope: A Catalog of >4000 Sunyaev–Zel'dovich Galaxy Clusters. Astrophysical Journal, Supplement Series, 2021, 253, 3.	3.0	118
25	Exploring the contamination of the DES-Y1 cluster sample with SPT-SZ selected clusters. Monthly Notices of the Royal Astronomical Society, 2021, 504, 1253-1272.	1.6	12
26	Constraints on Dark Matter Properties from Observations of MilkyÂWay Satellite Galaxies. Physical Review Letters, 2021, 126, 091101.	2.9	144
27	Dark Energy Survey Year 3 results: Curved-sky weak lensing mass map reconstruction. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4626-4645.	1.6	42
28	Benchmarking and scalability of machine-learning methods for photometric redshift estimation. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4847-4856.	1.6	15
29	Dark Energy Survey Year 3 Results: Photometric Data Set for Cosmology. Astrophysical Journal, Supplement Series, 2021, 254, 24.	3.0	93
30	Dark Energy Survey Year 3 results: redshift calibration of the weak lensing source galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4249-4277.	1.6	67
31	Galaxy clustering in harmonic space from the dark energy survey year 1 data: compatibility with real-space results. Monthly Notices of the Royal Astronomical Society, 2021, 505, 5714-5724.	1.6	5
32	Assessing tension metrics with dark energy survey and Planck data. Monthly Notices of the Royal Astronomical Society, 2021, 505, 6179-6194.	1.6	37
33	Galaxy morphological classification catalogue of the Dark Energy Survey Year 3 data with convolutional neural networks. Monthly Notices of the Royal Astronomical Society, 2021, 507, 4425-4444.	1.6	32
34	The Dark Energy Survey Data Release 2. Astrophysical Journal, Supplement Series, 2021, 255, 20.	3.0	120
35	Full-sky integrated Sachs–Wolfe maps for the MICE grand challenge lightcone simulation. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4344-4353.	1.6	2
36	Chronos: A NIR spectroscopic galaxy survey to probe the most fundamental stages of galaxy evolution. Experimental Astronomy, 2021, 51, 729.	1.6	0

#	Article	IF	Citations
37	Dark Energy Survey year 3 results: covariance modelling and its impact on parameter estimation and quality of fit. Monthly Notices of the Royal Astronomical Society, 2021, 508, 3125-3165.	1.6	39
38	Knowing when to stop. Nature Astronomy, 2021, 5, 855-856.	4.2	0
39	The mass and galaxy distribution around SZ-selected clusters. Monthly Notices of the Royal Astronomical Society, 2021, 507, 5758-5779.	1.6	20
40	Dark Energy Survey Y3 results: blending shear and redshift biases in image simulations. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3371-3394.	1.6	53
41	Classification of multiwavelength transients with machine learning. Monthly Notices of the Royal Astronomical Society, 2021, 502, 206-224.	1.6	10
42	The effect of environment on Type Ia supernovae in the Dark Energy Survey three-year cosmological sample. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4861-4876.	1.6	42
43	Galaxy–galaxy lensing with the DES-CMASS catalogue: measurement and constraints on the galaxy-matter cross-correlation. Monthly Notices of the Royal Astronomical Society, 2021, 509, 2033-2047.	1.6	6
44	Dark Energy Survey Year 3 results: galaxy sample for BAO measurement. Monthly Notices of the Royal Astronomical Society, 2021, 509, 778-799.	1.6	8
45	Dark Energy Survey Year 3 Results: Deep Field opticalÂ+Ânear-infrared images and catalogue. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3547-3579.	1.6	35
46	Probing gravity with the DES-CMASS sample and BOSS spectroscopy. Monthly Notices of the Royal Astronomical Society, 2021, 509, 4982-4996.	1.6	9
47	C/2014 UN ₂₇₁ (Bernardinelli-Bernstein): The Nearly Spherical Cow of Comets. Astrophysical Journal Letters, 2021, 921, L37.	3.0	21
48	Dark Energy Survey Year 3 Results: clustering redshifts – calibration of the weak lensing source redshift distributions with <i>redMaGiC</i> and BOSS/eBOSS. Monthly Notices of the Royal Astronomical Society, 2021, 510, 1223-1247.	1.6	36
49	A buyer's guide to the Hubble constant. Astronomy and Astrophysics Review, 2021, 29, 1.	9.1	83
50	Probing Galaxy Evolution in Massive Clusters Using ACT and DES: Splashback as a Cosmic Clock. Astrophysical Journal, 2021, 923, 37.	1.6	20
51	The DES view of the Eridanus supervoid and the CMB cold spot. Monthly Notices of the Royal Astronomical Society, 2021, 510, 216-229.	1.6	14
52	Dark Energy: is it â€̃just' Einstein's Cosmological Constant Λ?. Contemporary Physics, 2020, 61, 132-145.	0.8	3
53	The STRong lensing Insights into the Dark Energy Survey (STRIDES) 2017/2018 follow-up campaign: discovery of 10 lensed quasars and 10 quasar pairs. Monthly Notices of the Royal Astronomical Society, 2020, 494, 3491-3511.	1.6	34
54	Blinding multiprobe cosmological experiments. Monthly Notices of the Royal Astronomical Society, 2020, 494, 4454-4470.	1.6	22

#	Article	IF	Citations
55	Review of Particle Physics. Progress of Theoretical and Experimental Physics, 2020, 2020, .	1.8	3,177
56	The impact of spectroscopic incompleteness in direct calibration of redshift distributions for weak lensing surveys. Monthly Notices of the Royal Astronomical Society, 2020, 496, 4769-4786.	1.6	20
57	Quantifying Suspiciousness within correlated data sets. Monthly Notices of the Royal Astronomical Society, 2020, 496, 4647-4653.	1.6	25
58	GEOMAX: beyond linear compression for three-point galaxy clustering statistics. Monthly Notices of the Royal Astronomical Society, 2020, 497, 776-792.	1.6	10
59	Optical follow-up of gravitational wave triggers with DECam during the first two LIGO/VIRGO observing runs. Astronomy and Computing, 2020, 33, 100425.	0.8	9
60	$1\frac{1}{4}$ a'† masses: weak-lensing calibration of the Dark Energy Survey Year 1 redMaPPer clusters using stellar masses. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5450-5467.	1.6	8
61	Observation and confirmation of nine strong-lensing systems in Dark Energy Survey Year $1\ \text{data}$. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1308-1322.	1.6	6
62	Stellar mass as a galaxy cluster mass proxy: application to the Dark Energy Survey redMaPPer clusters. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4591-4606.	1.6	28
63	The impact of peculiar velocities on the estimation of the Hubble constant from gravitational wave standard sirens. Monthly Notices of the Royal Astronomical Society, 2020, 495, 90-97.	1.6	40
64	A joint SZ–X-ray–optical analysis of the dynamical state of 288 massive galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2020, 495, 705-725.	1.6	24
65	DES16C3cje: A low-luminosity, long-lived supernova. Monthly Notices of the Royal Astronomical Society, 2020, 496, 95-110.	1.6	8
66	Detection of Cross-Correlation between Gravitational Lensing and <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>γ</mml:mi></mml:math> Rays. Physical Review Letters, 2020, 124, 101102.	2.9	16
67	Dark Energy Survey Year 1 Results: Cosmological constraints from cluster abundances and weak lensing. Physical Review D, 2020, 102, .	1.6	140
68	Weak lensing of Type Ia Supernovae from the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2020, 496, 4051-4059.	1.6	7
69	Deep learning dark matter map reconstructions from DES SV weak lensing data. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5023-5029.	1.6	32
70	Coming of age of the standard model. Nature Astronomy, 2020, 4, 122-123.	4.2	2
71	Beyond two-point statistics: using the minimum spanning tree as a tool for cosmology. Monthly Notices of the Royal Astronomical Society, 2020, 491, 1709-1726.	1.6	20
72	Milky Way Satellite Census. I. The Observational Selection Function for Milky Way Satellites in DES Y3 and Pan-STARRS DR1. Astrophysical Journal, 2020, 893, 47.	1.6	110

#	Article	IF	CITATIONS
73	Dark Energy Survey Year 1 results: the lensing imprint of cosmic voids on the cosmic microwave background. Monthly Notices of the Royal Astronomical Society, 2020, 500, 464-480.	1.6	19
74	Dark Energy Survey year 3 results: point spread function modelling. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1282-1299.	1.6	41
75	Is diffuse intracluster light a good tracer of the galaxy cluster matter distribution?. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1300-1315.	1.6	24
76	Milky Way Satellite Census. II. Galaxy–Halo Connection Constraints Including the Impact of the Large Magellanic Cloud. Astrophysical Journal, 2020, 893, 48.	1.6	101
77	Constraints on the Physical Properties of GW190814 through Simulations Based on DECam Follow-up Observations by the Dark Energy Survey. Astrophysical Journal, 2020, 901, 83.	1.6	28
78	A DESGW Search for the Electromagnetic Counterpart to the LIGO/Virgo Gravitational-wave Binary Neutron Star Merger Candidate S190510g. Astrophysical Journal, 2020, 903, 75.	1.6	8
79	A Statistical Standard Siren Measurement of the Hubble Constant from the LIGO/Virgo Gravitational Wave Compact Object Merger GW190814 and Dark Energy Survey Galaxies. Astrophysical Journal Letters, 2020, 900, L33.	3.0	74
80	Dark Energy Survey Year 1 results: measurement of the baryon acoustic oscillation scale in the distribution of galaxies to redshift 1. Monthly Notices of the Royal Astronomical Society, 2019, 483, 4866-4883.	1.6	109
81	Detection of CMB-Cluster Lensing using Polarization Data from SPTpol. Physical Review Letters, 2019, 123, 181301.	2.9	12
82	Dark Energy Survey year 1 results: the relationship between mass and light around cosmic voids. Monthly Notices of the Royal Astronomical Society, 2019, 490, 3573-3587.	1.6	32
83	An Extended Catalog of Galaxy–Galaxy Strong Gravitational Lenses Discovered in DES Using Convolutional Neural Networks. Astrophysical Journal, Supplement Series, 2019, 243, 17.	3.0	77
84	Upper Bound of Neutrino Masses from Combined Cosmological Observations and Particle Physics Experiments. Physical Review Letters, 2019, 123, 081301.	2.9	52
85	Dark Energy Survey Year 1 results: the effect of intracluster light on photometric redshifts for weak gravitational lensing. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4389-4399.	1.6	7
86	Transfer learning for galaxy morphology from one survey to another. Monthly Notices of the Royal Astronomical Society, 2019, 484, 93-100.	1.6	58
87	Cosmological lensing ratios with DES Y1, SPT, and Planck. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1363-1379.	1.6	16
88	First Cosmology Results Using Type la Supernovae from the Dark Energy Survey: Photometric Pipeline and Light-curve Data Release. Astrophysical Journal, 2019, 874, 106.	1.6	60
89	Superluminous supernovae from the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2019, 487, 2215-2241.	1.6	67
90	Three new VHS–DES quasars at 6.7 < z < 6.9 and emission line properties at z > 6.5. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1874-1885.	1.6	64

#	Article	lF	CITATIONS
91	Steve: A Hierarchical Bayesian Model for Supernova Cosmology. Astrophysical Journal, 2019, 876, 15.	1.6	19
92	Measurement of the splashback feature around SZ-selected Galaxy clusters with DES, SPT, and ACT. Monthly Notices of the Royal Astronomical Society, 2019, 487, 2900-2918.	1.6	52
93	Finding high-redshift strong lenses in DES using convolutional neural networks. Monthly Notices of the Royal Astronomical Society, 2019, 484, 5330-5349.	1.6	62
94	Geometrical compression: a new method to enhance the BOSS galaxy bispectrum monopole constraints. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 484, L29-L34.	1.2	20
95	First cosmological results using Type Ia supernovae from the Dark Energy Survey: measurement of the Hubble constant. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2184-2196.	1.6	143
96	Cosmological Constraints from Multiple Probes in the Dark Energy Survey. Physical Review Letters, 2019, 122, 171301.	2.9	86
97	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814. Astrophysical Journal Letters, 2019, 876, L7.	3.0	179
98	Cosmological measurements from angular power spectra analysis of BOSS DR12 tomography. Monthly Notices of the Royal Astronomical Society, 2019, 485, 326-355.	1.6	44
99	First cosmology results using Type Ia supernova from the Dark Energy Survey: simulations to correct supernova distance biases. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1171-1187.	1.6	62
100	Enhancing BOSS bispectrum cosmological constraints with maximal compression. Monthly Notices of the Royal Astronomical Society, 2019, 484, 3713-3730.	1.6	29
101	Weak-lensing analysis of SPT-selected galaxy clusters using Dark Energy Survey Science Verification data. Monthly Notices of the Royal Astronomical Society, 2019, 485, 69-87.	1.6	21
102	More out of less: an excess integrated Sachs–Wolfe signal from supervoids mapped out by the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2019, 484, 5267-5277.	1.6	42
103	First Cosmology Results Using SNe Ia from the Dark Energy Survey: Analysis, Systematic Uncertainties, and Validation. Astrophysical Journal, 2019, 874, 150.	1.6	92
104	First Cosmology Results using Type Ia Supernovae from the Dark Energy Survey: Constraints on Cosmological Parameters. Astrophysical Journal Letters, 2019, 872, L30.	3.0	201
105	A Search for Optical Emission from Binary Black Hole Merger GW170814 with the Dark Energy Camera. Astrophysical Journal Letters, 2019, 873, L24.	3.0	14
106	The Morphology and Structure of Stellar Populations in the Fornax Dwarf Spheroidal Galaxy from Dark Energy Survey Data. Astrophysical Journal, 2019, 881, 118.	1.6	27
107	Dark Energy Survey year 1 results: galaxy sample for BAO measurement. Monthly Notices of the Royal Astronomical Society, 2019, 482, 2807-2822.	1.6	22
108	Is every strong lens model unhappy in its own way? Uniform modelling of a sample of 13 quadruply+ imaged quasars. Monthly Notices of the Royal Astronomical Society, 2019, 483, 5649-5671.	1.6	73

#	Article	IF	Citations
109	Dark Energy Survey Year 1 results: weak lensing mass calibration of redMaPPer galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2019, 482, 1352-1378.	1.6	135
110	Measuring linear and non-linear galaxy bias using counts-in-cells in the Dark Energy Survey Science Verification data. Monthly Notices of the Royal Astronomical Society, 2019, 482, 1435-1451.	1.6	13
111	Dark Energy Survey Year 1 Results: The Photometric Data Set for Cosmology. Astrophysical Journal, Supplement Series, 2018, 235, 33.	3.0	192
112	Dark Energy Survey Year 1 results: curved-sky weak lensing mass map. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3165-3190.	1.6	60
113	A measurement of CMB cluster lensing with SPT and DES year 1 data. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2674-2688.	1.6	41
114	Weak lensing magnification in the Dark Energy Survey Science Verification data. Monthly Notices of the Royal Astronomical Society, 2018, 476, 1071-1085.	1.6	21
115	BAO from angular clustering: optimization and mitigation of theoretical systematics. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3031-3051.	1.6	14
116	The Dark Energy Survey: Data Release 1. Astrophysical Journal, Supplement Series, 2018, 239, 18.	3.0	455
117	Dynamical Analysis of Three Distant Trans-Neptunian Objects with Similar Orbits. Astronomical Journal, 2018, 156, 273.	1.9	11
118	Survey geometry and the internal consistency of recent cosmic shear measurements. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4998-5004.	1.6	68
119	Maximal compression of the redshift-space galaxy power spectrum and bispectrum. Monthly Notices of the Royal Astronomical Society, 2018, 476, 4045-4070.	1.6	39
120	Improving weak lensing mass map reconstructions using Gaussian and sparsity priors: application to DES SV. Monthly Notices of the Royal Astronomical Society, 2018, 479, 2871-2888.	1.6	34
121	Baryon content in a sample of 91 galaxy clusters selected by the South Pole Telescope at 0.2Â <zâ<â1.25. 2018,="" 3072-3099.<="" 478,="" astronomical="" monthly="" notices="" of="" royal="" society,="" td="" the=""><td>1.6</td><td>70</td></zâ<â1.25.>	1.6	70
122	Dark Energy Survey Year 1 results: weak lensing shape catalogues. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1149-1182.	1.6	144
123	DES science portal: Computing photometric redshifts. Astronomy and Computing, 2018, 25, 58-80.	0.8	16
124	Dark Energy Survey Year 1 Results: calibration of redMaGiC redshift distributions in DES and SDSS from cross-correlations. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2427-2443.	1.6	39
125	DES meets Gaia: discovery of strongly lensed quasars from a multiplet search. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4345-4354.	1.6	39
126	The Splashback Feature around DES Galaxy Clusters: Galaxy Density and Weak Lensing Profiles. Astrophysical Journal, 2018, 864, 83.	1.6	69

#	Article	IF	CITATIONS
127	Galaxy bias from galaxy–galaxy lensing in the DES science verification data. Monthly Notices of the Royal Astronomical Society, 2018, 473, 1667-1684.	1.6	14
128	Morpho-z: improving photometric redshifts with galaxy morphology. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3613-3632.	1.6	39
129	Cross-correlation redshift calibration without spectroscopic calibration samples in DES Science Verification Data. Monthly Notices of the Royal Astronomical Society, 2018, 477, 2196-2208.	1.6	23
130	A catalogue of structural and morphological measurements for DES Y1. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2018-2040.	1.6	23
131	Dark Energy Survey Year 1 Results: A Precise H0 Estimate from DES Y1, BAO, and D/H Data. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3879-3888.	1.6	196
132	Stellar Streams Discovered in the Dark Energy Survey. Astrophysical Journal, 2018, 862, 114.	1.6	193
133	Unveiling the Dynamical State of Massive Clusters through the ICL Fraction. Astrophysical Journal, 2018, 857, 79.	1.6	41
134	Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing. Physical Review D, 2018, 98, .	1.6	751
135	Dark Energy Survey Year 1 Results: redshift distributions of the weak-lensing source galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 478, 592-610.	1.6	145
136	DES science portal: Creating science-ready catalogs. Astronomy and Computing, 2018, 24, 52-69.	0.8	5
137	SEARCHING FOR DARK MATTER ANNIHILATION IN RECENTLY DISCOVERED MILKY WAY SATELLITES WITH FERMI-LAT. Astrophysical Journal, 2017, 834, 110.	1.6	412
138	A Search for Kilonovae in the Dark Energy Survey. Astrophysical Journal, 2017, 837, 57.	1.6	34
139	Discovery and Physical Characterization of a Large Scattered Disk Object at 92 au. Astrophysical Journal Letters, 2017, 839, L15.	3.0	28
140	Cosmic voids and void lensing in the Dark Energy Survey Science Verification data. Monthly Notices of the Royal Astronomical Society, 2017, 465, 746-759.	1.6	86
141	An r-process Enhanced Star in the Dwarf Galaxy Tucana III*. Astrophysical Journal, 2017, 838, 44.	1.6	101
142	Cosmology from large-scale galaxy clustering and galaxy–galaxy lensing with Dark Energy Survey Science Verification data. Monthly Notices of the Royal Astronomical Society, 2017, 464, 4045-4062.	1.6	48
143	Discovery of the Lensed Quasar System DES J0408-5354. Astrophysical Journal Letters, 2017, 838, L15.	3.0	32
144	The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models. Astrophysical Journal Letters, 2017, 848, L17.	3.0	656

#	Article	IF	CITATIONS
145	The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Discovery of the Optical Counterpart Using the Dark Energy Camera. Astrophysical Journal Letters, 2017, 848, L16.	3.0	392
146	The DES Bright Arcs Survey: Hundreds of Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey Science Verification and Year 1 Observations. Astrophysical Journal, Supplement Series, 2017, 232, 15.	3.0	48
147	Galaxy–galaxy lensing in the Dark Energy Survey Science Verification data. Monthly Notices of the Royal Astronomical Society, 2017, 465, 4204-4218.	1.6	40
148	The Dark Energy Survey view of the Sagittarius stream: discovery of two faint stellar system candidates. Monthly Notices of the Royal Astronomical Society, 2017, 468, 97-108.	1.6	36
149	Evidence for Dynamically Driven Formation of the GW170817 Neutron Star Binary in NGC 4993. Astrophysical Journal Letters, 2017, 849, L34.	3.0	49
150	Core or Cusps: The Central Dark Matter Profile of a Strong Lensing Cluster with a Bright Central Image at Redshift 1. Astrophysical Journal, 2017, 843, 148.	1.6	20
151	Testing the lognormality of the galaxy and weak lensing convergence distributions from Dark Energy Survey maps. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1444-1461.	1.6	48
152	Environmental dependence of the galaxy stellar mass function in the Dark Energy Survey Science Verification Data. Monthly Notices of the Royal Astronomical Society, 2017, 466, 228-247.	1.6	21
153	Weak-lensing mass calibration of redMaPPer galaxy clusters in Dark Energy Survey Science Verification data. Monthly Notices of the Royal Astronomical Society, 2017, 469, 4899-4920.	1.6	87
154	CLASH: accurate photometric redshifts with 14 HST bands in massive galaxy cluster cores. Monthly Notices of the Royal Astronomical Society, 2017, 470, 95-113.	1.6	39
155	Photometric redshifts and clustering of emission line galaxies selected jointly by DES and eBOSS. Monthly Notices of the Royal Astronomical Society, 2017, 469, 2771-2790.	1.6	8
156	Eight new luminous z ≥ 6 quasars discovered via SED model fitting of VISTA, WISE and Dark Energy Survey Year 1 observations. Monthly Notices of the Royal Astronomical Society, 2017, 468, 4702-4718.	1.6	92
157	Estimating the mass of the Local Group using machine learning applied to numerical simulations. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 034-034.	1.9	23
158	The cosmic microwave background Cold Spot anomaly: the impact of sky masking and the expected contribution from the integrated Sachs–Wolfe effect. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 472, L65-L69.	1.2	7
159	Imprint of DES superstructures on the cosmic microwave background. Monthly Notices of the Royal Astronomical Society, 2017, 465, 4166-4179.	1.6	36
160	THE PHOENIX STREAM: A COLD STREAM IN THE SOUTHERN HEMISPHERE. Astrophysical Journal, 2016, 820, 58.	1.6	46
161	redMaGiC: selecting luminous red galaxies from the DES Science Verification data. Monthly Notices of the Royal Astronomical Society, 2016, 461, 1431-1450.	1.6	156
162	Cosmology constraints from shear peak statistics in Dark Energy Survey Science Verification data. Monthly Notices of the Royal Astronomical Society, 2016, 463, 3653-3673.	1.6	119

#	Article	IF	Citations
163	Physical properties of star clusters in the outer LMC as observed by the DES. Monthly Notices of the Royal Astronomical Society, 2016, 461, 519-541.	1.6	20
164	MAPPING AND SIMULATING SYSTEMATICS DUE TO SPATIALLY VARYING OBSERVING CONDITIONS IN DES SCIENCE VERIFICATION DATA. Astrophysical Journal, Supplement Series, 2016, 226, 24.	3.0	47
165	Cosmology from cosmic shear with Dark Energy Survey Science Verification data. Physical Review D, 2016, 94, .	1.6	125
166	A DARK ENERGY CAMERA SEARCH FOR AN OPTICAL COUNTERPART TO THE FIRST ADVANCED LIGO GRAVITATIONAL WAVE EVENT GW150914. Astrophysical Journal Letters, 2016, 823, L33.	3.0	55
167	A DARK ENERGY CAMERA SEARCH FOR MISSING SUPERGIANTS IN THE LMC AFTER THE ADVANCED LIGO GRAVITATIONAL-WAVE EVENT GW150914. Astrophysical Journal Letters, 2016, 823, L34.	3.0	20
168	DISCOVERY OF A STELLAR OVERDENSITY IN ERIDANUS–PHOENIX IN THE DARK ENERGY SURVEY. Astrophysical Journal, 2016, 817, 135.	1.6	36
169	Cross-correlation of gravitational lensing from DES Science Verification data with SPT and <i>Planck </i> li>lensing. Monthly Notices of the Royal Astronomical Society, 2016, 459, 21-34.	1.6	46
170	Could multiple voids explain the cosmic microwave background Cold Spot anomaly?. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 459, L71-L75.	1.2	16
171	THE REDMAPPER GALAXY CLUSTER CATALOG FROM DES SCIENCE VERIFICATION DATA. Astrophysical Journal, Supplement Series, 2016, 224, 1.	3.0	233
172	PHOTOMETRIC SUPERNOVA CLASSIFICATION WITH MACHINE LEARNING. Astrophysical Journal, Supplement Series, 2016, 225, 31.	3.0	138
173	Comparing Dark Energy Survey and ⟨i>HST⟨ i>–CLASH observations of the galaxy cluster RXC J2248.7â~'4431: implications for stellar mass versus dark matter. Monthly Notices of the Royal Astronomical Society, 2016, 463, 1486-1499.	1.6	12
174	ANNz2: Photometric Redshift and Probability Distribution Function Estimation using Machine Learning. Publications of the Astronomical Society of the Pacific, 2016, 128, 104502.	1.0	118
175	Large-Scale Distribution of Total Mass versus Luminous Matter from Baryon Acoustic Oscillations: First Search in the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey Data Release 10. Physical Review Letters, 2016, 116, 201302.	2.9	16
176	Detection of the kinematic Sunyaevâ€"Zel'dovich effect with DES Year 1 and SPT. Monthly Notices of the Royal Astronomical Society, 2016, 461, 3172-3193.	1.6	88
177	The DES Science Verification weak lensing shear catalogues. Monthly Notices of the Royal Astronomical Society, 2016, 460, 2245-2281.	1.6	137
178	The dark energy survey and operations: years 1 to 3. Proceedings of SPIE, 2016, , .	0.8	23
179	GALAXIES IN X-RAY SELECTED CLUSTERS AND GROUPS IN DARK ENERGY SURVEY DATA. I. STELLAR MASS GROWTH OF BRIGHT CENTRAL GALAXIES SINCE z $\hat{a}^{-1}/4$ 1.2. Astrophysical Journal, 2016, 816, 98.	1.6	43
180	DES14X3taz: A TYPE I SUPERLUMINOUS SUPERNOVA SHOWING A LUMINOUS, RAPIDLY COOLING INITIAL PRE-PEAK BUMP. Astrophysical Journal Letters, 2016, 818, L8.	3.0	78

#	Article	lF	Citations
181	Weak lensing by galaxy troughs in DES Science Verification data. Monthly Notices of the Royal Astronomical Society, 2016, 455, 3367-3380.	1.6	71
182	Galaxy clustering, photometric redshifts and diagnosis of systematics in the DES Science Verification data. Monthly Notices of the Royal Astronomical Society, 2016, 455, 4301-4324.	1.6	77
183	No galaxy left behind: accurate measurements with the faintest objects in the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2016, 457, 786-808.	1.6	71
184	Digging deeper into the Southern skies: a compact Milky Way companion discovered in first-year Dark Energy Survey data. Monthly Notices of the Royal Astronomical Society, 2016, 458, 603-612.	1.6	53
185	Halo detection via large-scale Bayesian inference. Monthly Notices of the Royal Astronomical Society, 2016, 460, 1340-1355.	1.6	0
186	Galaxy bias from the Dark Energy Survey Science Verification data: combining galaxy density maps and weak lensing maps. Monthly Notices of the Royal Astronomical Society, 2016, 459, 3203-3216.	1.6	23
187	OBSERVATION OF TWO NEW L4 NEPTUNE TROJANS IN THE DARK ENERGY SURVEY SUPERNOVA FIELDS. Astronomical Journal, 2016, 151, 39.	1.9	19
188	CMB lensing tomography with the DES Science Verification galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 456, 3213-3244.	1.6	95
189	SEARCH FOR GAMMA-RAY EMISSION FROM DES DWARF SPHEROIDAL GALAXY CANDIDATES WITH <i>FERMI</i> -LAT DATA. Astrophysical Journal Letters, 2015, 809, L4.	3.0	131
190	EIGHT ULTRA-FAINT GALAXY CANDIDATES DISCOVERED IN YEAR TWO OF THE DARK ENERGY SURVEY. Astrophysical Journal, 2015, 813, 109.	1.6	405
191	The LMC geometry and outer stellar populations from early DES data. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1129-1145.	1.6	39
192	Star/galaxy separation at faint magnitudes: application to a simulated Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2015, 450, 666-680.	1.6	43
193	The EChO science case. Experimental Astronomy, 2015, 40, 329-391.	1.6	31
194	THE DARK ENERGY CAMERA. Astronomical Journal, 2015, 150, 150.	1.9	718
195	A prescription for galaxy biasing evolution as a nuisance parameter. Monthly Notices of the Royal Astronomical Society, 2015, 448, 1389-1401.	1.6	28
196	Constraints on the richness–mass relation and the optical-SZE positional offset distribution for SZE-selected clusters. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2305-2319.	1.6	87
197	OzDES multifibre spectroscopy for the Dark Energy Survey: first-year operation and results. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3047-3063.	1.6	75
198	Gravitational Redshift of Galaxies in Clusters from the Sloan Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey. Physical Review Letters, 2015, 114, 071103.	2.9	26

#	Article	IF	Citations
199	Wide-Field Lensing Mass Maps from Dark Energy Survey Science Verification Data. Physical Review Letters, 2015, 115, 051301.	2.9	40
200	Optimizing spectroscopic and photometric galaxy surveys: same-sky benefits for dark energy and modified gravity. Monthly Notices of the Royal Astronomical Society, 2015, 451, 4424-4444.	1.6	7
201	Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data. Monthly Notices of the Royal Astronomical Society, 2015, 449, 2219-2238.	1.6	55
202	DES13S2cmm: the first superluminous supernova from the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1215-1227.	1.6	53
203	CLASH: EXTREME EMISSION-LINE GALAXIES AND THEIR IMPLICATION ON SELECTION OF HIGH-REDSHIFT GALAXIES. Astrophysical Journal, 2015, 801, 12.	1.6	10
204	STELLAR KINEMATICS AND METALLICITIES IN THE ULTRA-FAINT DWARF GALAXY RETICULUM II. Astrophysical Journal, 2015, 808, 95.	1.6	132
205	Discovery of two gravitationally lensed quasars in the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2015, 454, 1260-1265.	1.6	41
206	DES J0454 \hat{a}^{4448} : discovery of the first luminous (i>z < /i> \hat{a} % 4 quasar from the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2015, 454, 3952-3961.	1.6	60
207	AUTOMATED TRANSIENT IDENTIFICATION IN THE DARK ENERGY SURVEY. Astronomical Journal, 2015, 150, 82.	1.9	107
208	EIGHT NEW MILKY WAY COMPANIONS DISCOVERED IN FIRST-YEAR DARK ENERGY SURVEY DATA. Astrophysical Journal, 2015, 807, 50.	1.6	466
209	CLASH: THE CONCENTRATION-MASS RELATION OF GALAXY CLUSTERS. Astrophysical Journal, 2015, 806, 4.	1.6	170
210	Spectroscopic needs for imaging dark energy experiments. Astroparticle Physics, 2015, 63, 81-100.	1.9	66
211	THE MUSIC OF CLASH: PREDICTIONS ON THE CONCENTRATION-MASS RELATION. Astrophysical Journal, 2014, 797, 34.	1.6	115
212	Photometric redshift analysis in the Dark Energy Survey Science Verification data. Monthly Notices of the Royal Astronomical Society, 2014, 445, 1482-1506.	1.6	146
213	Optimizing spectroscopic and photometric galaxy surveys: efficient target selection and survey strategy. Monthly Notices of the Royal Astronomical Society, 2014, 438, 2218-2232.	1.6	6
214	CLASH-X: A COMPARISON OF LENSING AND X-RAY TECHNIQUES FOR MEASURING THE MASS PROFILES OF GALAXY CLUSTERS. Astrophysical Journal, 2014, 794, 136.	1.6	105
215	CLASH: EXTENDING GALAXY STRONG LENSING TO SMALL PHYSICAL SCALES WITH DISTANT SOURCES HIGHLY MAGNIFIED BY GALAXY CLUSTER MEMBERS. Astrophysical Journal, 2014, 786, 11.	1.6	13
216	A CENSUS OF STAR-FORMING GALAXIES IN THE <i>>Z < i> \hat{a}^{1}/4 9-10 UNIVERSE BASED ON <i>HST+SPITZER < i> OBSERVATIONS OVER 19 CLASH CLUSTERS: THREE CANDIDATE <i>Z < i> \hat{a}^{1}/4 9-10 GALAX AND IMPROVED CONSTRAINTS ON THE STAR FORMATION RATE DENSITY AT <i>Z < i> \hat{a}^{1}/4 9.2. Astrophysical Journal, 2014, 795, 126.</i></i></i></i>	IES 1.6	159

#	Article	IF	CITATIONS
217	CLASH: A CENSUS OF MAGNIFIED STAR-FORMING GALAXIES AT <i>z</i> å^1/4 6-8. Astrophysical Journal, 2014, 792, 76.	1.6	98
218	EVIDENCE FOR UBIQUITOUS HIGH-EQUIVALENT-WIDTH NEBULAR EMISSION IN < i> $z < i> a^1/4 $ 7 GALAXIES: TOWARI A CLEAN MEASUREMENT OF THE SPECIFIC STAR-FORMATION RATE USING A SAMPLE OF BRIGHT, MAGNIFIED GALAXIES. Astrophysical Journal, 2014, 784, 58.) 1.6	232
219	CLASH: z â ¹ / ₄ 6 young galaxy candidate quintuply lensed by the frontier field cluster RXC J2248.7â ¹ / ₂ 4431. Monthly Notices of the Royal Astronomical Society, 2014, 438, 1417-1434.	1.6	49
220	pkann – II. A non-linear matter power spectrum interpolator developed using artificial neural networks. Monthly Notices of the Royal Astronomical Society, 2014, 439, 2102-2121.	1.6	40
221	Dark energy, paradigm shifts, and the role of evidence. Astronomy and Geophysics, 2014, 55, 3.12-3.15.	0.1	11
222	THREE GRAVITATIONALLY LENSED SUPERNOVAE BEHIND CLASH GALAXY CLUSTERS. Astrophysical Journal, 2014, 786, 9.	1.6	45
223	The impact of camera optical alignments on weak lensing measures for the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2013, 431, 3291-3300.	1.6	2
224	Weighing the Local Group in the presence of dark energy. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 436, L45-L48.	1.2	34
225	CLASH: COMPLETE LENSING ANALYSIS OF THE LARGEST COSMIC LENS MACS J0717.5+3745 AND SURROUNDING STRUCTURES. Astrophysical Journal, 2013, 777, 43.	1.6	79
226	GALAXY HALO TRUNCATION AND GIANT ARC SURFACE BRIGHTNESS RECONSTRUCTION IN THE CLUSTER MACSJ1206.2-0847. Astrophysical Journal, 2013, 774, 124.	1.6	24
227	THE CONTRIBUTION OF HALOS WITH DIFFERENT MASS RATIOS TO THE OVERALL GROWTH OF CLUSTER-SIZED HALOS. Astrophysical Journal, 2013, 776, 91.	1.6	33
228	THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE: AN OVERVIEW. Astrophysical Journal, Supplement Series, 2012, 199, 25.	3.0	659
229	On combining galaxy clustering and weak lensing to unveil galaxy biasing via the halo model. Monthly Notices of the Royal Astronomical Society, 2012, 426, 566-587.	1.6	48
230	CLASH: NEW MULTIPLE IMAGES CONSTRAINING THE INNER MASS PROFILE OF MACS J1206.2–0847. Astrophysical Journal, 2012, 749, 97.	1.6	58
231	CLASH: MASS DISTRIBUTION IN AND AROUND MACS J1206.2-0847 FROM A FULL CLUSTER LENSING ANALYSIS. Astrophysical Journal, 2012, 755, 56.	1.6	101
232	CLASH: PRECISE NEW CONSTRAINTS ON THE MASS PROFILE OF THE GALAXY CLUSTER A2261. Astrophysical Journal, 2012, 757, 22.	1.6	112
233	THE 2MASS REDSHIFT SURVEY—DESCRIPTION AND DATA RELEASE. Astrophysical Journal, Supplement Series, 2012, 199, 26.	3.0	492
234	A magnified young galaxy from about 500 million years after the Big Bang. Nature, 2012, 489, 406-408.	13.7	273

#	Article	IF	Citations
235	Lifting the degeneracy between geometric and dynamic distortions using the sound horizon from the cosmic microwave background. Monthly Notices of the Royal Astronomical Society, 2012, 424, 2-10.	1.6	7
236	A uniformly derived catalogue of exoplanets from radial velocities. Monthly Notices of the Royal Astronomical Society, 2012, 423, 2800-2814.	1.6	24
237	PkANN - I. Non-linear matter power spectrum interpolation through artificial neural networks. Monthly Notices of the Royal Astronomical Society, 2012, 424, 1409-1418.	1.6	38
238	COMMISSION 47: COSMOLOGY. Proceedings of the International Astronomical Union, 2011, 7, 260-267.	0.0	0
239	THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH <i>HUBBLE</i> (CLASH): STRONG-LENSING ANALYSIS OF A383 FROM 16-BAND <i>HST</i> (i>/WFC3/ACS IMAGING. Astrophysical Journal, 2011, 742, 117.	1.6	63
240	The angular power spectra of photometric Sloan Digital Sky Survey luminous red galaxies. Monthly Notices of the Royal Astronomical Society, 2011, 412, 1669-1685.	1.6	31
241	A comparison of six photometric redshift methods applied to 1.5 million luminous red galaxies. Monthly Notices of the Royal Astronomical Society, 2011, 417, 1891-1903.	1.6	74
242	Excess Clustering on Large Scales in the MegaZ DR7 Photometric Redshift Survey. Physical Review Letters, 2011, 106, 241301.	2.9	53
243	NEUTRINO MASSES FROM COSMOLOGY. , 2011, , 173-191.		0
244	Dark energy: how the paradigm shifted. Physics World, 2010, 23, 32-37.	0.0	7
245	PHAT: PHoto- <i>z</i> Accuracy Testing. Astronomy and Astrophysics, 2010, 523, A31.	2.1	194
246	Neutrino masses from clustering of red and blue galaxies: a test of astrophysical uncertainties. Monthly Notices of the Royal Astronomical Society, 2010, 409, 1100-1112.	1.6	33
247	Exploring the luminosity evolution and stellar mass assembly of 2SLAQ luminous red galaxies between redshifts 0.4 and 0.8. Monthly Notices of the Royal Astronomical Society, 2010, 402, 2264-2278.	1.6	20
248	Galaxy Zoo: reproducing galaxy morphologies via machine learningã Monthly Notices of the Royal Astronomical Society, 2010, 406, 342-353.	1.6	153
249	New desalinated drinking water regulations are met by an innovative post-treatment process for improved public health. Water Science and Technology: Water Supply, 2009, 9, 225-231.	1.0	12
250	PCA and the Stellar Populations of Elliptical Galaxies. , 2009, , .		0
251	exofit: orbital parameters of extrasolar planets from radial velocities. Monthly Notices of the Royal Astronomical Society, 2009, 394, 1936-1944.	1.6	48
252	The 6dF Galaxy Survey: final redshift release (DR3) and southern large-scale structures. Monthly Notices of the Royal Astronomical Society, 2009, 399, 683-698.	1.6	766

#	Article	IF	CITATIONS
253	Climbing up the cosmic ladder. Nature, 2009, 459, 650-651.	13.7	O
254	Is the misalignment of the Local Group velocity and the dipole generated by the 2MASS Redshift Survey typical in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi<math>\hat{P}</mml:mi<math></mml:math> cold dark matter and the halo model of galaxies?. Physical Review D, 2009, 80, .	1.6	10
255	Dark energy: back to Newton?. Astronomy and Geophysics, 2008, 49, 1.13-1.18.	0.1	20
256	Halo-model signatures from 380Â000 Sloan Digital Sky Survey luminous red galaxies with photometric redshifts. Monthly Notices of the Royal Astronomical Society, 2008, 385, 1257-1269.	1.6	80
257	Predicting spectral features in galaxy spectra from broad-band photometry. Monthly Notices of the Royal Astronomical Society, 2008, 387, 945-953.	1.6	5
258	Photometric redshifts for the Dark Energy Survey and VISTA and implications for large-scale structure. Monthly Notices of the Royal Astronomical Society, 2008, 386, 1219-1233.	1.6	52
259	Photometric redshifts for weak lensing tomography from space: the role of optical and near infrared photometry. Monthly Notices of the Royal Astronomical Society, 2008, 387, 969-986.	1.6	72
260	Neutrino mass, dark energy, and the linear growth factor. Physical Review D, 2008, 77, .	1.6	44
261	Rethinking Desalinated Water Quality and Agriculture. Science, 2007, 318, 920-921.	6.0	196
262	A new post-treatment process for attaining Ca2+, Mg2+, SO42â^' and alkalinity criteria in desalinated water. Water Research, 2007, 41, 3989-3997.	5.3	56
263	Cosmological baryonic and matter densities from 600 000 SDSS luminous red galaxies with photometric redshifts. Monthly Notices of the Royal Astronomical Society, 2007, 374, 1527-1548.	1.6	139
264	MegaZ-LRG: a photometric redshift catalogue of one million SDSS luminous red galaxies. Monthly Notices of the Royal Astronomical Society, 2007, 375, 68-76.	1.6	88
265	Cross-correlation of 2MASS and WMAP 3: implications for the integrated Sachs-Wolfe effect. Monthly Notices of the Royal Astronomical Society, 2007, 377, 1085-1094.	1.6	85
266	Decoding the spectra of SDSS early-type galaxies: new indicators of age and recent star formation. Monthly Notices of the Royal Astronomical Society, 2007, 382, 750-760.	1.6	20
267	Massive Elliptical Galaxies: From Cores to Halos. Astrophysical Journal, 2006, 648, 826-834.	1.6	24
268	Centralised urban wastewater reuse: what is the public attitude?. Water Science and Technology, 2006, 54, 423-430.	1.2	34
269	The dipole anisotropy of the 2 Micron All-Sky Redshift Survey. Monthly Notices of the Royal Astronomical Society, 2006, 368, 1515-1526.	1.6	109
270	A principal component analysis approach to the star formation history of elliptical galaxies in compact groups. Monthly Notices of the Royal Astronomical Society, 2006, 370, 828-836.	1.6	37

#	Article	IF	Citations
271	Reconstructed density and velocity fields from the 2MASS Redshift Survey. Monthly Notices of the Royal Astronomical Society, 2006, 373, 45-64.	1.6	143
272	Neutrino masses from cosmological probes. New Journal of Physics, 2005, 7, 61-61.	1.2	69
273	The 2dF Galaxy Redshift Survey: the nature of the relative bias between galaxies of different spectral type. Monthly Notices of the Royal Astronomical Society, 2005, 356, 456-474.	1.6	18
274	The 2dF Galaxy Redshift Survey: luminosity functions by density environment and galaxy type. Monthly Notices of the Royal Astronomical Society, 2005, 356, 1155-1167.	1.6	216
275	Distribution of red and blue galaxies in groups: an empirical test of the halo model. Monthly Notices of the Royal Astronomical Society, 2005, 361, 415-427.	1.6	61
276	The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications. Monthly Notices of the Royal Astronomical Society, 2005, 362, 505-534.	1.6	1,599
277	The 2dF Galaxy Redshift Survey: correlation with the ROSAT-ESO flux-limited X-ray galaxy cluster survey. Monthly Notices of the Royal Astronomical Society, 2005, 363, 661-674.	1.6	16
278	The 2dF Galaxy Redshift Survey: stochastic relative biasing between galaxy populations. Monthly Notices of the Royal Astronomical Society, 2005, 356, 247-269.	1.6	68
279	Treatment of Presettled Municipal Wastewater Using a Passively Aerated Vertical Bed. Environmental Engineering Science, 2005, 22, 707-715.	0.8	3
280	Galaxy groups in the 2dFGRS: the group-finding algorithm and the 2PIGG catalogue. Monthly Notices of the Royal Astronomical Society, 2004, 348, 866-878.	1.6	307
281	Galaxy ecology: groups and low-density environments in the SDSS and 2dFGRS. Monthly Notices of the Royal Astronomical Society, 2004, 348, 1355-1372.	1.6	443
282	The 2dF galaxy redshift survey: clustering properties of radio galaxies. Monthly Notices of the Royal Astronomical Society, 2004, 350, 1485-1494.	1.6	54
283	The 2dF Galaxy Redshift Survey: the blue galaxy fraction and implications for the Butcher-Oemler effect. Monthly Notices of the Royal Astronomical Society, 2004, 351, 125-132.	1.6	80
284	The 2dF Galaxy Redshift Survey: the clustering of galaxy groups. Monthly Notices of the Royal Astronomical Society, 2004, 352, 211-225.	1.6	53
285	Substructure analysis of selected low-richness 2dFGRS clusters of galaxies. Monthly Notices of the Royal Astronomical Society, 2004, 352, 605-654.	1.6	44
286	The 2dF Galaxy Redshift Survey: hierarchical galaxy clustering. Monthly Notices of the Royal Astronomical Society, 2004, 351, L44-L48.	1.6	62
287	The 2dF Galaxy Redshift Survey: voids and hierarchical scaling models. Monthly Notices of the Royal Astronomical Society, 2004, 352, 828-836.	1.6	59
288	The 2dF Galaxy Redshift Survey: higher-order galaxy correlation functions. Monthly Notices of the Royal Astronomical Society, 2004, 352, 1232-1244.	1.6	68

#	Article	IF	CITATIONS
289	The 2dF Galaxy Redshift Survey: spherical harmonics analysis of fluctuations in the final catalogue. Monthly Notices of the Royal Astronomical Society, 2004, 353, 1201-1218.	1.6	198
290	The 2dF Galaxy Redshift Survey: the local E+A galaxy population. Monthly Notices of the Royal Astronomical Society, 2004, 355, 713-727.	1.6	111
291	The 6dF Galaxy Survey: samples, observational techniques and the first data release. Monthly Notices of the Royal Astronomical Society, 2004, 355, 747-763.	1.6	425
292	The 2dF Galaxy Redshift Survey: Wiener reconstruction of the cosmic web. Monthly Notices of the Royal Astronomical Society, 2004, 352, 939-960.	1.6	64
293	Galaxy groups in the Two-degree Field Galaxy Redshift Survey: the luminous content of the groups. Monthly Notices of the Royal Astronomical Society, 2004, 355, 769-784.	1.6	125
294	ANNz: Estimating Photometric Redshifts Using Artificial Neural Networks. Publications of the Astronomical Society of the Pacific, 2004, 116, 345-351.	1.0	370
295	The 2dF Galaxy Redshift Survey as a Cosmological Laboratory. Publications of the Astronomical Society of Australia, 2004, 21, 404-407.	1.3	4
296	ASTROPHYSICS: Precision Cosmology? Not Just Yet Science, 2003, 299, 1532-1533.	6.0	195
297	The 2dF Galaxy Redshift Survey: correlation functions, peculiar velocities and the matter density of the Universe. Monthly Notices of the Royal Astronomical Society, 2003, 346, 78-96.	1.6	664
298	Estimating photometric redshifts with artificial neural networks. Monthly Notices of the Royal Astronomical Society, 2003, 339, 1195-1202.	1.6	162
299	â€~Hyper-parameters' approach to joint estimation: applications to Cepheid-calibrated distances and X-ray clusters. Monthly Notices of the Royal Astronomical Society, 2003, 340, 573-579.	1.6	5
300	The 2dF Galaxy Redshift Survey: the luminosity function of cluster galaxies. Monthly Notices of the Royal Astronomical Society, 2003, 342, 725-737.	1.6	151
301	Galaxy spectral parametrization in the 2dF Galaxy Redshift Survey as a diagnostic of star formation history. Monthly Notices of the Royal Astronomical Society, 2003, 343, 871-879.	1.6	46
302	The 2dF Galaxy Redshift Survey: galaxy clustering per spectral type. Monthly Notices of the Royal Astronomical Society, 2003, 344, 847-856.	1.6	170
303	A seeded ambient temperature ferrite process for treatment of AMD waters: magnetite formation in the presence and absence of calcium ions under steady state operation. Water S A, 2003, 29, 117.	0.2	10
304	Observational tests of FRW world models. Classical and Quantum Gravity, 2002, 19, 3517-3526.	1.5	11
305	The 2dF Galaxy Redshift Survey: Constraints on Cosmic Star Formation History from the Cosmic Spectrum. Astrophysical Journal, 2002, 569, 582-594.	1.6	51
306	The 2dF Galaxy Redshift Survey: a targeted study of catalogued clusters of galaxies. Monthly Notices of the Royal Astronomical Society, 2002, 329, 87-101.	1.6	75

#	Article	IF	Citations
307	Radio sources in the 2dF Galaxy Redshift Survey - II. Local radio luminosity functions for AGN and star-forming galaxies at 1.4 GHz. Monthly Notices of the Royal Astronomical Society, 2002, 329, 227-245.	1.6	209
308	Evidence for a non-zero and a low matter density from a combined analysis of the 2dF Galaxy Redshift Survey and cosmic microwave background anisotropies. Monthly Notices of the Royal Astronomical Society, 2002, 330, L29-L35.	1.6	227
309	The Las Campanas Infrared Survey - II. Photometric redshifts, comparison with models and clustering evolution. Monthly Notices of the Royal Astronomical Society, 2002, 332, 617-646.	1.6	84
310	The 2dF Galaxy Redshift Survey: the dependence of galaxy clustering on luminosity and spectral type. Monthly Notices of the Royal Astronomical Society, 2002, 332, 827-838.	1.6	411
311	Features in the primordial power spectrum: constraints from the cosmic microwave background and the limitation of the 2dF and SDSS redshift surveys to detect them. Monthly Notices of the Royal Astronomical Society, 2002, 333, 93-99.	1.6	17
312	The 2dF Galaxy Redshift Survey: the population of nearby radio galaxies at the 1-mJy level. Monthly Notices of the Royal Astronomical Society, 2002, 333, 100-120.	1.6	44
313	The 2dF Galaxy Redshift Survey: galaxy luminosity functions per spectral type. Monthly Notices of the Royal Astronomical Society, 2002, 333, 133-144.	1.6	280
314	The 2dF Galaxy Redshift Survey: the amplitudes of fluctuations in the 2dFGRS and the CMB, and implications for galaxy biasing. Monthly Notices of the Royal Astronomical Society, 2002, 333, 961-968.	1.6	174
315	Spectroscopic detection of quasars in the 2dF Galaxy Redshift Survey. Monthly Notices of the Royal Astronomical Society, 2002, 334, 209-218.	1.6	3
316	The 2dF Galaxy Redshift Survey: the environmental dependence of galaxy star formation rates near clusters. Monthly Notices of the Royal Astronomical Society, 2002, 334, 673-683.	1.6	622
317	Combining cosmological data sets: hyperparameters and Bayesian evidence. Monthly Notices of the Royal Astronomical Society, 2002, 335, 377-388.	1.6	103
318	The 2dF Galaxy Redshift Survey: the bias of galaxies and the density of the Universe. Monthly Notices of the Royal Astronomical Society, 2002, 335, 432-440.	1.6	504
319	The 2dF Galaxy Redshift Survey: the bJ-band galaxy luminosity function and survey selection function. Monthly Notices of the Royal Astronomical Society, 2002, 336, 907-931.	1.6	371
320	Parameter constraints for flat cosmologies from cosmic microwave background and 2dFGRS power spectra. Monthly Notices of the Royal Astronomical Society, 2002, 337, 1068-1080.	1.6	275
321	The Las Campanas Infrared Survey. III. TheHâ€Band Imaging Survey and the Nearâ€Infrared and Optical Photometric Catalogs. Astrophysical Journal, 2002, 570, 54-74.	1.6	50
322	Chalk as the carrier for nitrifying biofilm in a fluidized bed reactor. Water Research, 2001, 35, 284-290.	5.3	17
323	Ammonium removal using a novel unsaturated flow biological filter with passive aeration. Water Research, 2001, 35, 397-404.	5.3	39
324	Measurement of pH, alkalinity and acidity in ultra-soft waters. Water S A, 2001, 27, 423.	0.2	14

#	Article	IF	CITATIONS
325	The 2dF Gravitational Lens Survey. Publications of the Astronomical Society of Australia, 2001, 18, 192-194.	1.3	3
326	The Las Campanas Infrared Survey: Early-Type Galaxy Progenitors beyond [CLC][ITAL]z[/ITAL][/CLC] = 1. Astrophysical Journal, 2001, 560, L131-L134.	1.6	89
327	Cosmological parameters from velocities, cosmic microwave background and supernovae. Monthly Notices of the Royal Astronomical Society, 2001, 321, 333-340.	1.6	41
328	Objective classification of galaxy spectra using the information bottleneck method. Monthly Notices of the Royal Astronomical Society, 2001, 323, 270-284.	1.6	50
329	The 2dF Galaxy Redshift Survey: the number and luminosity density of galaxies. Monthly Notices of the Royal Astronomical Society, 2001, 324, 825-841.	1.6	105
330	Constraints on cosmological anisotropy out to $z=1$ from Type Ia supernovae. Monthly Notices of the Royal Astronomical Society, 2001, 323, 859-864.	1.6	38
331	The 2dF galaxy redshift survey: near-infrared galaxy luminosity functions. Monthly Notices of the Royal Astronomical Society, 2001, 326, 255-273.	1.6	794
332	The 2dF Galaxy Redshift Survey: the power spectrum and the matter content of the Universe. Monthly Notices of the Royal Astronomical Society, 2001, 327, 1297-1306.	1.6	672
333	The 2dF Galaxy Redshift Survey: luminosity dependence of galaxy clustering. Monthly Notices of the Royal Astronomical Society, 2001, 328, 64-70.	1.6	362
334	The 2dF Galaxy Redshift Survey: spectra and redshifts. Monthly Notices of the Royal Astronomical Society, 2001, 328, 1039-1063.	1.6	1,833
335	A measurement of the cosmological mass density from clustering in the 2dF Galaxy Redshift Survey. Nature, 2001, 410, 169-173.	13.7	545
336	Large Surveys in Cosmology: The Changing Sociology. Astrophysics and Space Science Library, 2001, , 139-147.	1.0	4
337	The supergalactic plane revisited with the Optical Redshift Survey. Monthly Notices of the Royal Astronomical Society, 2000, 312, 166-176.	1.6	38
338	The observed evolution of galaxy clustering versus epoch-dependent biasing models. Monthly Notices of the Royal Astronomical Society, 2000, 314, 546-556.	1.6	37
339	The Lymanαforest in a truncated hierarchical structure formation. Monthly Notices of the Royal Astronomical Society, 2000, 313, L39-L42.	1.6	4
340	Bayesian 'hyper-parameters' approach to joint estimation: the Hubble constant from CMB measurements. Monthly Notices of the Royal Astronomical Society, 2000, 315, L45-L49.	1.6	44
341	Massive lossless data compression and multiple parameter estimation from galaxy spectra. Monthly Notices of the Royal Astronomical Society, 2000, 317, 965-972.	1.6	193
342	The Universe behind the Milky Way. Astronomy and Astrophysics Review, 2000, 10, 211-261.	9.1	59

#	Article	IF	CITATIONS
343	The 2–10 keV Xâ€Ray Background Dipole and Its Cosmological Implications. Astrophysical Journal, 2000, 544, 49-62.	1.6	41
344	Results from the Dwingeloo Obscured Galaxies Survey. International Astronomical Union Colloquium, 1999, 171, 334-336.	0.1	0
345	Principal component analysis of synthetic galaxy spectra. Monthly Notices of the Royal Astronomical Society, 1999, 303, 284-296.	1.6	48
346	Constraints on the clustering, biasing and redshift distribution of radio sources. Monthly Notices of the Royal Astronomical Society, 1999, 306, 943-953.	1.6	30
347	The 2dF Galaxy Redshift Survey: spectral types and luminosity functions. Monthly Notices of the Royal Astronomical Society, 1999, 308, 459-472.	1.6	248
348	Cosmological parameters from cluster abundances, cosmic microwave background and IRAS. Monthly Notices of the Royal Astronomical Society, 1999, 310, 565-570.	1.6	34
349	The large-scale smoothness of the Universe. Nature, 1999, 397, 225-230.	13.7	133
350	Stochastic Nonlinear Galaxy Biasing. Astrophysical Journal, 1999, 520, 24-34.	1.6	308
351	Searching for large-scale structure in deep radio surveys. Monthly Notices of the Royal Astronomical Society, 1998, 297, 545-558.	1.6	42
352	Galaxy candidates in the Zone of Avoidance. Monthly Notices of the Royal Astronomical Society, 1998, 299, 24-30.	1.6	4
353	Variance and skewness in the FIRST survey. Monthly Notices of the Royal Astronomical Society, 1998, 300, 257-268.	1.6	78
354	Galaxies Discovered behind the Milky Way by the Dwingeloo Obscured Galaxies Survey. Astronomical Journal, 1998, 115, 584-591.	1.9	32
355	The Velocity Field Predicted by the Optical Redshift Survey. Astrophysical Journal, 1998, 508, 6-16.	1.6	27
356	Largeâ€Scale Fluctuations in the Xâ€Ray Background. Astrophysical Journal, 1998, 509, 531-536.	1.6	18
357	Joint Estimation of Cosmological Parameters fromCosmic Microwave Background and [ITAL]IRAS[/ITAL] Data. Astrophysical Journal, 1998, 509, L65-L68.	1.6	33
358	The X-ray background as a probe of density fluctuations at high redshift. Monthly Notices of the Royal Astronomical Society, 1997, 284, 499-506.	1.6	24
359	The correlation function of radio sources. Monthly Notices of the Royal Astronomical Society, 1997, 286, 994-1002.	1.6	39
360	Wiener reconstruction of the IRAS 1.2-Jy galaxy redshift survey: cosmographical implications. Monthly Notices of the Royal Astronomical Society, 1997, 287, 425-444.	1.6	41

#	Article	IF	CITATIONS
361	What is a peculiar galaxy?. Monthly Notices of the Royal Astronomical Society, 1997, 286, 969-978.	1.6	8
362	Neural computation as a tool for galaxy classification: methods and examples. Monthly Notices of the Royal Astronomical Society, 1996, 283, 207-221.	1.6	79
363	An artificial neural network approach to the classification of galaxy spectra. Monthly Notices of the Royal Astronomical Society, 1996, 283, 651-665.	1.6	105
364	Optical observations of Dwingeloo 1, a nearby barred spiral galaxy behind the Milky Way. Monthly Notices of the Royal Astronomical Society, 1996, 280, 537-549.	1.6	4
365	The two-point correlation function and morphological segregation in the Optical Redshift Survey. Monthly Notices of the Royal Astronomical Society, 1996, 283, 709-720.	1.6	81
366	Faint blue galaxies as a probe of the X-ray background at high redshift. Monthly Notices of the Royal Astronomical Society, 1996, 280, 469-480.	1.6	13
367	Nearby galaxies and the Ginga X-ray background. Monthly Notices of the Royal Astronomical Society, 1995, 275, 22-30.	1.6	7
368	Automated morphological classification of APM galaxies by supervised artificial neural networks. Monthly Notices of the Royal Astronomical Society, 1995, 275, 567-590.	1.6	97
369	Large-scale mass distribution behind the Galactic plane. Monthly Notices of the Royal Astronomical Society, 1995, 275, 797-811.	1.6	44
370	Galaxies, Human Eyes, and Artificial Neural Networks. Science, 1995, 267, 859-862.	6.0	82
371	A spherical harmonic approach to redshift distortion and a measurement of Formula from the 1.2-Jy IRAS Redshift Survey. Monthly Notices of the Royal Astronomical Society, 1994, 266, 219-226.	1.6	116
372	Discovery of a nearby spiral galaxy behind the Milky Way. Nature, 1994, 372, 77-79.	13.7	42
373	Wiener filtering of the COBE Differential Microwave Radiometer data. Astrophysical Journal, 1994, 432, L75.	1.6	42
374	A significant contribution to the cosmic X-ray background from sources associated with nearby galaxies. Nature, 1993, 364, 693-695.	13.7	16
375	The Puppis cluster of galaxies behind the Galactic plane and the origin of the 'Local Anomaly'. Monthly Notices of the Royal Astronomical Society, 1993, 262, 711-716.	1.6	14
376	The bivariate diameter-magnitude function of galaxies in the ESO-LV catalogue. Monthly Notices of the Royal Astronomical Society, 1993, 260, 285-298.	1.6	24
377	Do galactic potential wells depend on their large-scale environment?. Monthly Notices of the Royal Astronomical Society, 1993, 261, 895-908.	1.6	1
378	Spherical harmonic analysis of the 2-Jy IRAS galaxy redshift survey. Monthly Notices of the Royal Astronomical Society, 1993, 264, 439-454.	1.6	8

#	Article	IF	Citations
379	The Hubble Space Telescope Snapshot Survey. III - Further observations in search of gravitationally lensed quasars. Astrophysical Journal, 1993, 402, 69.	1.6	20
380	Non-Gaussian signatures from Gaussian initial fluctuations - Evolution of skewness and kurtosis from cosmological simulations in the highly nonlinear regime. Astrophysical Journal, 1993, 402, 387.	1.6	34
381	Morphological Classification of galaxies by Artificial Neural Networks. Monthly Notices of the Royal Astronomical Society, 1992, 259, 8P-12P.	1.6	120
382	Spherical harmonic analysis of IRAS galaxies: implications for the Great Attractor and Cold Dark Matter. Monthly Notices of the Royal Astronomical Society, 1992, 256, 229-237.	1.6	32
383	Streaming Motions in the Local Universe. Highlights of Astronomy, 1992, 9, 687-691.	0.0	0
384	Accurate positions and finding charts for 528 high-redshift, luminous quasars. Publications of the Astronomical Society of the Pacific, 1992, 104, 678.	1.0	10
385	The topology of large-scale structure. V - Two-dimensional topology of sky maps. Astrophysical Journal, 1992, 385, 26.	1.6	25
386	The snapshot survey - A search for gravitationally lensed quasars with the Hubble Space Telescope. Astrophysical Journal, 1992, 387, 56.	1.6	30
387	Gravitational lensing of quasars as seen by the Hubble Space Telescope Snapshot Survey. Astrophysical Journal, 1992, 394, 51.	1.6	18
388	Biasing and distribution functions for different galaxy types in optical and IRAS catalogs. Astrophysical Journal, 1992, 396, 430.	1.6	29
389	A gravitational lens candidate discovered with the Hubble Space Telescope. Astrophysical Journal, 1992, 386, L1.	1.6	10
390	Cross-Correlation of the X-Ray Background with Nearby Galaxies: Erratum. Astrophysical Journal, 1992, 399, L107.	1.6	2
391	Ly $\hat{l}\pm$ clouds at low redshift and the cosmological constant. Monthly Notices of the Royal Astronomical Society, 1991, 253, 17P-20P.	1.6	6
392	Dynamical effects of the cosmological constant. Monthly Notices of the Royal Astronomical Society, 1991, 251, 128-136.	1.6	574
393	Peculiar cluster velocities from measurements of the kinematic Sunyaev-Zeldovich effect. Astrophysical Journal, 1991, 372, 21.	1.6	38
394	Evolution of velocity and density fields around clusters of galaxies. Astrophysical Journal, 1991, 374, 29.	1.6	32
395	Unsaturated Comptonization of isotropic photon spectra by relativistic electrons. Astrophysical Journal, 1991, 374, 44.	1.6	12
396	Cross-correlation of the X-ray background with nearby galaxies. Astrophysical Journal, 1991, 378, L37.	1.6	13

#	Article	IF	Citations
397	Relative bias parameters from angular correlations of optical and IRAS galaxies. Astrophysical Journal, 1990, 350, 119.	1.6	27
398	Local gravity and peculiar velocity - Probes of cosmological models. Astrophysical Journal, 1990, 352, 448.	1.6	18
399	Constraints on a hot intergalactic medium from the X-ray and submillimeter backgrounds. Astrophysical Journal, 1990, 349, L9.	1.6	0
400	The spatial distribution of X-ray clusters of galaxies. Monthly Notices of the Royal Astronomical Society, 1989, 238, 881-895.	1.6	70
401	Distances to clusters of galaxies by maximum entropy method. Monthly Notices of the Royal Astronomical Society, 1989, 240, 753-763.	1.6	9
402	Theoretical implications of cosmological dipoles. Monthly Notices of the Royal Astronomical Society, 1989, 237, 129-162.	1.6	27
403	Cosmological deductions from the alignment of local gravity and motion. Monthly Notices of the Royal Astronomical Society, 1989, 241, 325-345.	1.6	58
404	The peculiar acceleration of the Local Group as deduced from the optical and IRAS flux dipoles. Monthly Notices of the Royal Astronomical Society, 1988, 234, 677-701.	1.6	42
405	Contributions to the microwave background dipole from galaxies, and constraints on the anisotropy of the far-infrared background. Monthly Notices of the Royal Astronomical Society, 1988, 235, 1P-5P.	1.6	3
406	Optical dipole anisotropy. Monthly Notices of the Royal Astronomical Society, 1987, 225, 213-220.	1.6	42
407	The dipole anisotropy of a new, colour-selected, IRAS galaxy sample. Monthly Notices of the Royal Astronomical Society, 1987, 228, 5P-10P.	1.6	28
408	Cooling of Population III objects in a pressure supported collapse. Monthly Notices of the Royal Astronomical Society, 1986, 220, 259-269.	1.6	25
409	Photometric redshift estimation: methods and applications. , 0, , 283-298.		0
410	Star-galaxy classification in the Dark Energy Survey Y1 dataset. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	19