Carlos Molina-Santiago

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2936962/publications.pdf

Version: 2024-02-01

38 papers 1,258 citations

430874 18 h-index 377865 34 g-index

44 all docs 44 docs citations

44 times ranked

2000 citing authors

#	Article	IF	CITATIONS
1	GNPS Dashboard: collaborative exploration of mass spectrometry data in the web browser. Nature Methods, 2022, 19, 134-136.	19.0	35
2	Mechanisms of resistance to glyphosate: an example of bacterial adaptability to anthropogenic substances. Environmental Microbiology, 2022, 24, 3313-3315.	3.8	1
3	A Noninvasive Method for Time-Lapse Imaging of Microbial Interactions and Colony Dynamics. Microbiology Spectrum, 2022, 10, .	3.0	4
4	Bacterial extracellular matrix as a natural source of biotechnologically multivalent materials. Computational and Structural Biotechnology Journal, 2021, 19, 2796-2805.	4.1	10
5	A community resource for paired genomic and metabolomic data mining. Nature Chemical Biology, 2021, 17, 363-368.	8.0	81
6	Chemical interplay and complementary adaptative strategies toggle bacterial antagonism and co-existence. Cell Reports, 2021, 36, 109449.	6.4	28
7	Chemical Proportionality within Molecular Networks. Analytical Chemistry, 2021, 93, 12833-12839.	6.5	22
8	Untargeted mass spectrometry-based metabolomics approach unveils molecular changes in raw and processed foods and beverages. Food Chemistry, 2020, 302, 125290.	8.2	52
9	Chemical fertilization: a shortâ€ŧerm solution for plant productivity?. Microbial Biotechnology, 2020, 13, 1311-1313.	4.2	11
10	More than words: the chemistry behind the interactions in the plant holobiont. Environmental Microbiology, 2020, 22, 4532-4544.	3.8	33
11	Dual functionality of the amyloid protein TasA in Bacillus physiology and fitness on the phylloplane. Nature Communications, 2020, 11, 1859.	12.8	59
12	Full Transcriptomic Response of Pseudomonas aeruginosa to an Inulin-Derived Fructooligosaccharide. Frontiers in Microbiology, 2020, 11, 202.	3.5	14
13	Understanding Bacterial Physiology for Improving Full Fitness. Progress in Biological Control, 2020, , 47-60.	0.5	1
14	Microbiomes as the new keystone for life sciences development. Microbial Biotechnology, 2019, 12, 579-581.	4.2	1
15	The extracellular matrix protects Bacillus subtilis colonies from Pseudomonas invasion and modulates plant co-colonization. Nature Communications, 2019, 10, 1919.	12.8	102
16	Ruminal metagenomic libraries as a source of relevant hemicellulolytic enzymes for biofuel production. Microbial Biotechnology, 2018, 11, 781-787.	4.2	16
17	The race for antimicrobials in the multidrug resistance era. Microbial Biotechnology, 2018, 11, 976-978.	4.2	3
18	Insights in a novel gramâ€positive type IV secretion system. Environmental Microbiology, 2018, 20, 2334-2336.	3.8	0

#	Article	IF	CITATIONS
19	Interspecies crossâ€ŧalk between coâ€ɛultured <i>Pseudomonas putida</i> and <i>Escherichia coli</i> Environmental Microbiology Reports, 2017, 9, 441-448.	2.4	8
20	Global transcriptional response of solventâ€sensitive and solventâ€tolerant <i>Pseudomonas putida</i> strains exposed to toluene. Environmental Microbiology, 2017, 19, 645-658.	3.8	36
21	Understanding butanol tolerance and assimilation in <scp><i>P</i></scp> <i>seudomonas putida</i> â€ <scp>BIRD</scp> â€1: an integrated omics approach. Microbial Biotechnology, 2016, 9, 100-115.	4.2	38
22	A <i>Pseudomonas putida</i> double mutant deficient in butanol assimilation: a promising step for engineering a biological biofuel production platform. FEMS Microbiology Letters, 2016, 363, fnw018.	1.8	16
23	Pseudomonas putida as a platform for the synthesis of aromatic compounds. Microbiology (United) Tj ${\sf ETQq1~1~0}$.784314 r 1.8	rgBT Overloc
24	Efflux pumpâ€deficient mutants as a platform to search for microbes that produce antibiotics. Microbial Biotechnology, 2015, 8, 716-725.	4.2	9
25	Mechanisms of solvent resistance mediated by interplay of cellular factors in <i>Pseudomonas putida < /i>. FEMS Microbiology Reviews, 2015, 39, 555-566.</i>	8.6	143
26	Differential transcriptional response to antibiotics by <scp><i>P</i></scp> <i>seudomonas putida</i> â€ <scp>DOT</scp> â€ <scp>T1E</scp> . Environmental Microbiology, 2015, 17, 3251-3262.	3.8	32
27	Draft wholeâ€genome sequence of the antibioticâ€producing soil isolate <scp><i>P</i></scp> <i>seudomonas</i> >J>. Environmental Microbiology Reports, 2015, 7, 288-292.	2.4	15
28	Diversity of small <scp>RNAs</scp> expressed in <scp><i>P</i></scp> <i>seudomonas</i> species. Environmental Microbiology Reports, 2015, 7, 227-236.	2.4	27
29	Fructooligosacharides Reduce Pseudomonas aeruginosa PAO1 Pathogenicity through Distinct Mechanisms. PLoS ONE, 2014, 9, e85772.	2.5	25
30	GtrS and GltR form a two-component system: the central role of 2-ketogluconate in the expression of exotoxin A and glucose catabolic enzymes in <i>Pseudomonas aeruginosa</i> . Nucleic Acids Research, 2014, 42, 7654-7665.	14.5	41
31	Bactericidal and bacteriostatic antibiotics and the <scp>F</scp> enton reaction. Microbial Biotechnology, 2014, 7, 194-195.	4.2	5
32	Identification of New Residues Involved in Intramolecular Signal Transmission in a Prokaryotic Transcriptional Repressor. Journal of Bacteriology, 2014, 196, 588-594.	2.2	6
33	Interspecies signalling: <i><scp>P</scp>seudomonas putida</i> efflux pump <scp>TtgGHI</scp> is activated by indole to increase antibiotic resistance. Environmental Microbiology, 2014, 16, 1267-1281.	3.8	77
34	Antibiotic Resistance Determinants in a Pseudomonas putida Strain Isolated from a Hospital. PLoS ONE, 2014, 9, e81604.	2.5	86
35	Antibiotic adjuvants: identification and clinical use. Microbial Biotechnology, 2013, 6, 445-449.	4.2	76
36	Mechanisms of Resistance to Chloramphenicol in Pseudomonas putida KT2440. Antimicrobial Agents and Chemotherapy, 2012, 56, 1001-1009.	3.2	89

#	Article	IF	CITATIONS
37	Evolution of antibiotic resistance, catabolic pathways and niche colonization. Microbial Biotechnology, 2012, 5, 452-454.	4.2	O
38	Directed evolution, natural products for cancer chemotherapy, and microâ€biosensing robots. Microbial Biotechnology, 2011, 4, 314-317.	4.2	0