Mark Hochstrasser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2936801/publications.pdf

Version: 2024-02-01

178 papers 22,538 citations

71 h-index 146 g-index

191 all docs

191 docs citations

191 times ranked

16272 citing authors

#	Article	IF	CITATIONS
1	Selective microautophagy of proteasomes is initiated by ESCRT-0 and is promoted by proteasome ubiquitylation. Journal of Cell Science, 2022, 135, .	1.2	11
2	The CinB Nuclease from <i>w</i> No <i>Wolbachia</i> Is Sufficient for Induction of Cytoplasmic Incompatibility in <i>Drosophila</i> MBio, 2022, 13, e0317721.	1.8	21
3	Cytoplasmic incompatibility: A Wolbachia toxin–antidote mechanism comes into view. Current Biology, 2022, 32, R287-R289.	1.8	3
4	Crystal Structures of Wolbachia CidA and CidB Reveal Determinants of Bacteria-induced Cytoplasmic Incompatibility and Rescue. Nature Communications, 2022, 13, 1608.	5.8	15
5	A versatile new tool derived from a bacterial deubiquitylase to detect and purify ubiquitylated substrates and their interacting proteins. PLoS Biology, 2022, 20, e3001501.	2.6	2
6	Conserved proline residues in the coiled coil–OB domain linkers of Rpt proteins facilitate eukaryotic proteasome base assembly. Journal of Biological Chemistry, 2021, 296, 100660.	1.6	3
7	Histone sumoylation and chromatin dynamics. Nucleic Acids Research, 2021, 49, 6043-6052.	6.5	70
8	Yeast Nst1 is a novel component of P-bodies and is a specific suppressor of proteasome base assembly defects. Molecular Biology of the Cell, 2021, 32, ar6.	0.9	2
9	Protein quality control degron-containing substrates are differentially targeted in the cytoplasm and nucleus by ubiquitin ligases. Genetics, 2021, 217, 1-19.	1.2	14
10	Structural and mechanistic insights into the complexes formed by <i>Wolbachia</i> cytoplasmic incompatibility factors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	33
11	Ubiquitin Ligase Redundancy and Nuclear-Cytoplasmic Localization in Yeast Protein Quality Control. Biomolecules, 2021, 11, 1821.	1.8	22
12	Crystal structure of a guanine nucleotide exchange factor encoded by the scrub typhus pathogen $\langle i \rangle$ Orientia tsutsugamushi $\langle i \rangle$. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30380-30390.	3.3	7
13	Histone sumoylation promotes Set3 histone-deacetylase complex-mediated transcriptional regulation. Nucleic Acids Research, 2020, 48, 12151-12168.	6.5	28
14	The Biochemistry of Cytoplasmic Incompatibility Caused by Endosymbiotic Bacteria. Genes, 2020, 11, 852.	1.0	33
15	Epigenetic Mechanisms Contribute to Evolutionary Adaptation of Gene Network Activity under Environmental Selection. Cell Reports, 2020, 33, 108306.	2.9	10
16	A deubiquitylase with an unusually high-affinity ubiquitin-binding domain from the scrub typhus pathogen Orientia tsutsugamushi. Nature Communications, 2020, 11, 2343.	5.8	22
17	The Sts1 nuclear import adaptor uses a noncanonical bipartite NLS and is directly degraded by the proteasome. Journal of Cell Science, 2020, 133, .	1.2	11
18	SUMO and cellular adaptive mechanisms. Experimental and Molecular Medicine, 2020, 52, 931-939.	3. 2	22

#	Article	IF	CITATIONS
19	Microautophagy regulates proteasome homeostasis. Current Genetics, 2020, 66, 683-687.	0.8	24
20	A <i>Wolbachia </i> nuclease and its binding partner provide a distinct mechanism for cytoplasmic incompatibility. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22314-22321.	3.3	82
21	The Ulp2 <scp>SUMO </scp> protease promotes transcription elongation through regulation of histone sumoylation. EMBO Journal, 2019, 38, e102003.	3. 5	28
22	Endoplasmic reticulum stress differentially inhibits endoplasmic reticulum and inner nuclear membrane protein quality control degradation pathways. Journal of Biological Chemistry, 2019, 294, 19814-19830.	1.6	17
23	The Toxin–Antidote Model of Cytoplasmic Incompatibility: Genetics and Evolutionary Implications. Trends in Genetics, 2019, 35, 175-185.	2.9	111
24	Preface. Methods in Enzymology, 2019, 619, xv-xvii.	0.4	0
25	Preface. Methods in Enzymology, 2019, 618, xvii-xix.	0.4	0
26	Caution Does Not Preclude Predictive and Testable Models of Cytoplasmic Incompatibility: A Reply to Shropshire et al Trends in Genetics, 2019, 35, 399-400.	2.9	21
27	AMPK regulates ESCRT-dependent microautophagy of proteasomes concomitant with proteasome storage granule assembly during glucose starvation. PLoS Genetics, 2019, 15, e1008387.	1.5	21
28	Cholesterol increases protein levels of the E3 ligase MARCH6 and thereby stimulates protein degradation. Journal of Biological Chemistry, 2019, 294, 2436-2448.	1.6	33
29	Ubiquitin-dependent protein degradation at the endoplasmic reticulum and nuclear envelope. Seminars in Cell and Developmental Biology, 2019, 93, 111-124.	2.3	98
30	The Wolbachia cytoplasmic incompatibility enzyme CidB targets nuclear import and protamine-histone exchange factors. ELife, 2019, 8, .	2.8	61
31	Title is missing!. , 2019, 15, e1008387.		0
32	Title is missing!. , 2019, 15, e1008387.		0
33	Title is missing!. , 2019, 15, e1008387.		0
34	Title is missing!. , 2019, 15, e1008387.		0
35	DNA binding by the MATα2 transcription factor controls its access to alternative ubiquitin-modification pathways. Molecular Biology of the Cell, 2018, 29, 542-556.	0.9	12
36	Distinct adaptive mechanisms drive recovery from aneuploidy caused by loss of the Ulp2 SUMO protease. Nature Communications, 2018, 9, 5417.	5.8	21

#	Article	IF	CITATIONS
37	Rapid degradation of progressive ankylosis protein (ANKH) in craniometaphyseal dysplasia. Scientific Reports, 2018, 8, 15710.	1.6	11
38	A Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility. Nature Microbiology, 2017, 2, 17007.	5.9	307
39	Adaptive aneuploidy counters a dysregulated SUMO system. Cell Cycle, 2017, 16, 383-385.	1.3	4
40	The DUB blade goes snicker-snack: Novel ubiquitin cleavage by a Legionella effector protein. Cell Research, 2017, 27, 845-846.	5.7	3
41	Proteasome Structure and Assembly. Journal of Molecular Biology, 2017, 429, 3500-3524.	2.0	275
42	A unified mechanism for proteolysis and autocatalytic activation in the 20S proteasome. Nature Communications, 2016, 7, 10900.	5.8	88
43	Recent progress in ubiquitin and ubiquitin-like protein (Ubl) signaling. Cell Research, 2016, 26, 389-390.	5.7	16
44	Substrate specificity of the ubiquitin and Ubl proteases. Cell Research, 2016, 26, 441-456.	5.7	92
45	A Conserved C-terminal Element in the Yeast Doa10 and Human MARCH6 Ubiquitin Ligases Required for Selective Substrate Degradation. Journal of Biological Chemistry, 2016, 291, 12105-12118.	1.6	36
46	The Regulation of Chromatin by Dynamic SUMO Modifications. Methods in Molecular Biology, 2016, 1475, 23-38.	0.4	7
47	Loss of the SUMO protease Ulp2 triggers a specific multichromosome aneuploidy. Genes and Development, 2016, 30, 1881-1894.	2.7	37
48	Protein Modification: Bacterial Effectors Rewrite the Rules ofÂUbiquitylation. Current Biology, 2016, 26, R539-R542.	1.8	2
49	Gyre and gimble in the proteasome. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12896-12898.	3.3	3
50	Assembly of an Evolutionarily Conserved Alternative Proteasome Isoform in Human Cells. Cell Reports, 2016, 14, 2962-2974.	2.9	39
51	Distinct Elements in the Proteasomal \hat{l}^2 5 Subunit Propeptide Required for Autocatalytic Processing and Proteasome Assembly. Journal of Biological Chemistry, 2016, 291, 1991-2003.	1.6	15
52	SUMO Pathway Modulation of Regulatory Protein Binding at the Ribosomal DNA Locus in <i>Saccharomyces cerevisiae</i>	1.2	22
53	Proteasomes: Isolation and Activity Assays. Current Protocols in Cell Biology, 2015, 67, 3.43.1-3.43.20.	2.3	29
54	STUbL-mediated degradation of the transcription factor MATα2 requires degradation elements that coincide with corepressor binding sites. Molecular Biology of the Cell, 2015, 26, 3401-3412.	0.9	20

#	Article	IF	CITATIONS
55	A Single \hat{l}_{\pm} Helix Drives Extensive Remodeling of the Proteasome Lid and Completion of Regulatory Particle Assembly. Cell, 2015, 163, 432-444.	13.5	73
56	Ubiquitin-dependent protein degradation at the yeast endoplasmic reticulum and nuclear envelope. Critical Reviews in Biochemistry and Molecular Biology, 2015, 50, 1-17.	2.3	72
57	Site-specific cation release drives actin filament severing by vertebrate cofilin. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17821-17826.	3.3	45
58	The Intrinsically Disordered Sem1 Protein Functions as a Molecular Tether during Proteasome Lid Biogenesis. Molecular Cell, 2014, 53, 433-443.	4.5	64
59	Assembly of the 20S proteasome. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2-12.	1.9	80
60	Molecular Architecture and Assembly of the Eukaryotic Proteasome. Annual Review of Biochemistry, 2013, 82, 415-445.	5.0	330
61	N-terminal acetylation of the yeast Derlin Der1 is essential for Hrd1 ubiquitin-ligase activity toward luminal ER substrates. Molecular Biology of the Cell, 2013, 24, 890-900.	0.9	43
62	A Conserved Protein with AN1 Zinc Finger and Ubiquitin-like Domains Modulates Cdc48 (p97) Function in the Ubiquitin-Proteasome Pathway. Journal of Biological Chemistry, 2013, 288, 33682-33696.	1.6	23
63	Ulp2 SUMO Protease. , 2013, , 2362-2365.		0
64	The Doa4 Deubiquitylating Enzyme (Saccharomyces cerevisiae)., 2013,, 2049-2052.		0
65	Aberrant substrate engagement of the ER translocon triggers degradation by the Hrd1 ubiquitin ligase. Journal of Cell Biology, 2012, 197, 761-773.	2.3	59
66	Desumoylation of the Endoplasmic Reticulum Membrane VAP Family Protein Scs2 by Ulp1 and SUMO Regulation of the Inositol Synthesis Pathway. Molecular and Cellular Biology, 2012, 32, 64-75.	1.1	24
67	Function and regulation of SUMO proteases. Nature Reviews Molecular Cell Biology, 2012, 13, 755-766.	16.1	523
68	Split-Doa10: A Naturally Split Polytopic Eukaryotic Membrane Protein Generated by Fission of a Nuclear Gene. PLoS ONE, 2012, 7, e45194.	1.1	6
69	A new class of SUMO proteases. EMBO Reports, 2012, 13, 284-285.	2.0	10
70	Disulfide Engineering to Map Subunit Interactions in the Proteasome and Other Macromolecular Complexes. Methods in Molecular Biology, 2012, 832, 349-362.	0.4	5
71	Analysis of Protein Ubiquitination. Current Protocols in Protein Science, 2011, 66, Unit14.5.	2.8	29
72	Incorporation of the Rpn12 Subunit Couples Completion of Proteasome Regulatory Particle Lid Assembly to Lid-Base Joining. Molecular Cell, 2011, 44, 907-917.	4.5	63

#	Article	IF	Citations
73	A conserved 20S proteasome assembly factor requires a C-terminal HbYX motif for proteasomal precursor binding. Nature Structural and Molecular Biology, 2011, 18, 622-629.	3.6	70
74	Order of the Proteasomal ATPases and Eukaryotic Proteasome Assembly. Cell Biochemistry and Biophysics, 2011, 60, 13-20.	0.9	51
75	An Unusual Transmembrane Helix in the Endoplasmic Reticulum Ubiquitin Ligase Doa10 Modulates Degradation of Its Cognate E2 Enzyme. Journal of Biological Chemistry, 2011, 286, 20163-20174.	1.6	35
76	A WLM Protein with SUMO-Directed Protease Activity. Molecular and Cellular Biology, 2010, 30, 3734-3736.	1.1	6
77	SUMO-independent in vivo activity of a SUMO-targeted ubiquitin ligase toward a short-lived transcription factor. Genes and Development, 2010, 24, 893-903.	2.7	80
78	The Ubiquitin–Proteasome System. , 2010, , 1293-1296.		0
79	Redundancy and variation in the ubiquitin-mediated proteolytic targeting of a transcription factor. Cell Cycle, 2010, 9, 4282-4285.	1.3	18
80	Designed Proteins To Modulate Cellular Networks. ACS Chemical Biology, 2010, 5, 545-552.	1.6	46
81	Heterohexameric Ring Arrangement of the Eukaryotic Proteasomal ATPases: Implications for Proteasome Structure and Assembly. Molecular Cell, 2010, 38, 393-403.	4.5	130
82	The SUMO-targeted ubiquitin ligase subunit Slx5 resides in nuclear foci and at sites of DNA breaks. Cell Cycle, 2009, 8, 1080-1089.	1.3	40
83	Essential Role of Nuclear Localization for Yeast Ulp2 SUMO Protease Function. Molecular Biology of the Cell, 2009, 20, 2196-2206.	0.9	31
84	A Tetrahedral Transition State at the Active Sites of the 20S Proteasome Is Coupled to Opening of the \hat{l}_{\pm} -Ring Channel. Structure, 2009, 17, 1137-1147.	1.6	84
85	Small epitopeâ€linker modules for PCRâ€based Câ€ŧerminal tagging in <i>Saccharomyces cerevisiae</i> . Yeast, 2009, 26, 185-192.	0.8	89
86	Origin and function of ubiquitin-like proteins. Nature, 2009, 458, 422-429.	13.7	670
87	Introduction to Intracellular Protein Degradation. Chemical Reviews, 2009, 109, 1479-1480.	23.0	9
88	Quantitative Proteomics Reveals the Function of Unconventional Ubiquitin Chains in Proteasomal Degradation. Cell, 2009, 137, 133-145.	13.5	948
89	Multiple Assembly Chaperones Govern Biogenesis of the Proteasome Regulatory Particle Base. Cell, 2009, 137, 887-899.	13.5	153
90	Identification of SUMO-Interacting Proteins by Yeast Two-Hybrid Analysis. Methods in Molecular Biology, 2009, 497, 107-120.	0.4	29

#	Article	IF	Citations
91	Degradation of the bile salt export pump at endoplasmic reticulum in progressive familial intrahepatic cholestasis type II. Hepatology, 2008, 48, 1558-1569.	3.6	70
92	A multimeric assembly factor controls the formation of alternative 20S proteasomes. Nature Structural and Molecular Biology, 2008, 15, 237-244.	3.6	144
93	Diversity of degradation signals in the ubiquitin–proteasome system. Nature Reviews Molecular Cell Biology, 2008, 9, 679-689.	16.1	701
94	Some assembly required: dedicated chaperones in eukaryotic proteasome biogenesis. Biological Chemistry, 2008, 389, 1143-1151.	1.2	38
95	Ulp2 and the DNA damage response: Desumoylation enables safe passage through mitosis. Cell Cycle, 2008, 7, 52-56.	1.3	13
96	An emerging role for thioesterâ€linked polyubiquitin chains in protein degradation. FASEB Journal, 2008, 22, 605.7.	0.2	0
97	The Yeast Hex3·Slx8 Heterodimer Is a Ubiquitin Ligase Stimulated by Substrate Sumoylation. Journal of Biological Chemistry, 2007, 282, 34176-34184.	1.6	200
98	The Ulp2 SUMO Protease Is Required for Cell Division following Termination of the DNA Damage Checkpoint. Molecular and Cellular Biology, 2007, 27, 6948-6961.	1.1	40
99	A nuclear envelope protein linking nuclear pore basket assembly, SUMO protease regulation, and mRNA surveillance. Journal of Cell Biology, 2007, 178, 813-827.	2.3	99
100	Ubiquitin Ligation without a Ligase. Developmental Cell, 2007, 13, 4-6.	3.1	9
101	Autoregulation of an E2 enzyme by ubiquitin-chain assembly on its catalytic residue. Nature Cell Biology, 2007, 9, 422-427.	4.6	142
102	\hat{l}^2 -Subunit appendages promote 20S proteasome assembly by overcoming an Ump1-dependent checkpoint. EMBO Journal, 2007, 26, 2339-2349.	3.5	132
103	Modification of Proteins by Ubiquitin and Ubiquitin-Like Proteins. Annual Review of Cell and Developmental Biology, 2006, 22, 159-180.	4.0	1,352
104	Lingering Mysteries of Ubiquitin-Chain Assembly. Cell, 2006, 124, 27-34.	13.5	230
105	Cecile M. Pickart 1954–2006. Nature Cell Biology, 2006, 8, 542-543.	4.6	0
106	Spatially regulated ubiquitin ligation by an ER/nuclear membrane ligase. Nature, 2006, 443, 827-831.	13.7	155
107	Membrane and soluble substrates of the Doa10 ubiquitin ligase are degraded by distinct pathways. EMBO Journal, 2006, 25, 533-543.	3.5	249
108	The Short-Lived $Mat\hat{l}\pm2$ Transcriptional Repressor Is Protected from Degradation In Vivo by Interactions with Its Corepressors Tup1 and Ssn6. Molecular and Cellular Biology, 2006, 26, 371-380.	1.1	17

#	Article	IF	CITATIONS
109	A conserved late endosome–targeting signal required for Doa4 deubiquitylating enzyme function. Journal of Cell Biology, 2006, 175, 825-835.	2.3	41
110	An amphipathic helix targets serum and glucocorticoid-induced kinase 1 to the endoplasmic reticulum-associated ubiquitin-conjugation machinery. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11178-11183.	3.3	79
111	Membrane Topology of the Yeast Endoplasmic Reticulum-localized Ubiquitin Ligase Doa10 and Comparison with Its Human Ortholog TEB4 (MARCH-VI). Journal of Biological Chemistry, 2006, 281, 4646-4653.	1.6	126
112	Defining the SUMO-modified Proteome by Multiple Approaches in Saccharomyces cerevisiae*. Journal of Biological Chemistry, 2005, 280, 4102-4110.	1.6	354
113	Rtt106p is a histone chaperone involved in heterochromatin-mediated silencing. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13410-13415.	3.3	110
114	Preparation and Characterization of Yeast and Human Desumoylating Enzymes. Methods in Enzymology, 2005, 398, 457-467.	0.4	3
115	Varshavsky's Contributions. Science, 2004, 306, 1290-1292.	6.0	11
116	Sem1, the yeast ortholog of a human BRCA2-binding protein, is a component of the proteasome regulatory particle that enhances proteasome stability. Journal of Cell Science, 2004, 117, 6447-6454.	1.2	94
117	Distinct Machinery Is Required in Saccharomyces cerevisiae for the Endoplasmic Reticulum-associated Degradation of a Multispanning Membrane Protein and a Soluble Luminal Protein. Journal of Biological Chemistry, 2004, 279, 38369-38378.	1.6	232
118	Ubiquitin signalling: what's in a chain?. Nature Cell Biology, 2004, 6, 571-572.	4.6	28
119	Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast. EMBO Journal, 2004, 23, 500-510.	3.5	85
120	NF-κB signaling: Flipping the Switch with Polyubiquitin Chains. Current Biology, 2004, 14, R898-R900.	1.8	25
121	Mechanism and function of deubiquitinating enzymes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1695, 189-207.	1.9	799
122	Ubiquitin-dependent control of development in Saccharomyces cerevisiae. Current Opinion in Microbiology, 2004, 7, 647-654.	2.3	7
123	A superfamily of protein tags: ubiquitin, SUMO and related modifiers. Trends in Biochemical Sciences, 2003, 28, 321-328.	3.7	359
124	The Ubiquitin-Proteasome System. , 2003, , 347-350.		0
125	The Ulp1 SUMO isopeptidase. Journal of Cell Biology, 2003, 160, 1069-1082.	2.3	186
126	Ubiquitin-dependent degradation of the yeast MatÂ2 repressor enables a switch in developmental state. Genes and Development, 2003, 17, 2259-2270.	2.7	48

#	Article	IF	Citations
127	MOLECULAR BIOLOGY: New Proteases in a Ubiquitin Stew. Science, 2002, 298, 549-552.	6.0	26
128	Assaying protein ubiquitination in Saccharomyces cerevisiae. Methods in Enzymology, 2002, 351, 248-257.	0.4	15
129	Analysis of Protein Ubiquitination. Current Protocols in Protein Science, 2002, 29, Unit 14.5.	2.8	8
130	New Structural Clues to Substrate Specificity in the "Ubiquitin System― Molecular Cell, 2002, 9, 453-454.	4.5	14
131	SP-RING for SUMO. Cell, 2001, 107, 5-8.	13.5	257
132	Unraveling the means to the end in ATP-dependent proteases. , 2001, 8, 294-296.		19
133	A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matalpha 2 repressor degradation. Genes and Development, 2001, 15, 2660-2674.	2.7	421
134	Evolution and function of ubiquitin-like protein-conjugation systems. Nature Cell Biology, 2000, 2, E153-E157.	4.6	364
135	The Doa4 Deubiquitinating Enzyme Is Functionally Linked to the Vacuolar Protein-sorting and Endocytic Pathways. Molecular Biology of the Cell, 2000, 11, 3365-3380.	0.9	282
136	Analysis of the Deubiquitinating Enzymes of the Yeast Saccharomyces cerevisiae. Biological Chemistry, 2000, 381, 981-92.	1.2	162
137	The Yeast ULP2 (SMT4) Gene Encodes a Novel Protease Specific for the Ubiquitin-Like Smt3 Protein. Molecular and Cellular Biology, 2000, 20, 2367-2377.	1.1	337
138	A viable ubiquitin-activating enzyme mutant for evaluating ubiquitin system function in Saccharomyces cerevisiae. FEBS Letters, 2000, 477, 193-198.	1.3	27
139	BIOCHEMISTRY: All in the Ubiquitin Family. Science, 2000, 289, 563-564.	6.0	106
140	The Doa4 Deubiquitinating Enzyme Is Required for Ubiquitin Homeostasis in Yeast. Molecular Biology of the Cell, 1999, 10, 2583-2594.	0.9	264
141	Interaction of the Doa4 Deubiquitinating Enzyme with the Yeast 26S Proteasome. Molecular Biology of the Cell, 1999, 10, 741-756.	0.9	118
142	A new protease required for cell-cycle progression in yeast. Nature, 1999, 398, 246-251.	13.7	672
143	Structure and functional analysis of the 26S proteasome subunits from plants. Molecular Biology Reports, 1999, 26, 137-146.	1.0	48
144	Eukaryotic 20S proteasome catalytic subunit propeptides prevent active site inactivation by N-terminal acetylation and promote particle assembly. EMBO Journal, 1999, 18, 3575-3585.	3.5	134

#	Article	IF	Citations
145	Substrate Targeting in the Ubiquitin System. Cell, 1999, 97, 427-430.	13.5	417
146	Unified nomenclature for subunits of the Saccharomyces cerevisiae proteasome regulatory particle. Trends in Biochemical Sciences, 1998, 23, 244-245.	3.7	127
147	Degradation Signal Masking by Heterodimerization of MATα2 and MATa1 Blocks Their Mutual Destruction by the Ubiquitin-Proteasome Pathway. Cell, 1998, 94, 217-227.	13.5	189
148	An Evolutionarily Conserved Gene on Human Chromosome 5q33–q34,UBH1,Encodes a Novel Deubiquitinating Enzyme. Genomics, 1998, 49, 411-418.	1.3	18
149	A Deubiquitinating Enzyme That Disassembles Free Polyubiquitin Chains Is Required for Development but Not Growth in Dictyostelium. Journal of Biological Chemistry, 1998, 273, 29178-29187.	1.6	44
150	The Deubiquitinating Enzymes., 1998,, 99-125.		46
151	Ubiquitin-Dependent Degradation of Transcription Regulators. , 1998, , 279-302.		13
152	Molecular Organization of the 20S Proteasome Gene Family from Arabidopsis thaliana. Genetics, 1998, 149, 677-692.	1.2	103
153	There's the Rub: a novel ubiquitin-like modification linked to cell cycleÂregulation. Genes and Development, 1998, 12, 901-907.	2.7	119
154	Identification of the yeast 20S proteasome catalytic centers and subunit interactions required for active-site formation. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 7156-7161.	3.3	275
155	SUMO-1: Ubiquitin gains weight. Trends in Cell Biology, 1997, 7, 408-413.	3.6	79
156	In vivo disassembly of free polyubiquitin chains by yeast Ubp14 modulates rates of protein degradation by the proteasome. EMBO Journal, 1997, 16, 4826-4838.	3.5	211
157	UBIQUITIN-DEPENDENT PROTEIN DEGRADATION. Annual Review of Genetics, 1996, 30, 405-439.	3.2	1,566
158	Autocatalytic Subunit Processing Couples Active Site Formation in the 20S Proteasome to Completion of Assembly. Cell, 1996, 86, 961-972.	13.5	376
159	Protein Degradation or Regulation: Ub the Judge. Cell, 1996, 84, 813-815.	13.5	273
160	DUB-1, a deubiquitinating enzyme with growth-suppressing activity Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 3275-3279.	3.3	166
161	The yeast SEN3 gene encodes a regulatory subunit of the 26S proteasome complex required for ubiquitin-dependent protein degradation in vivo. Molecular and Cellular Biology, 1995, 15, 6311-6321.	1.1	75
162	Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Current Opinion in Cell Biology, 1995, 7, 215-223.	2.6	859

#	Article	IF	CITATIONS
163	The DOA Pathway: Studies on the Functions and Mechanisms of Ubiquitin-dependent Protein Degradation in the Yeast Saccharomyces cerevisiae. Cold Spring Harbor Symposia on Quantitative Biology, 1995, 60, 503-513.	2.0	20
164	Degradation of the yeast MATÎ ± 2 transcriptional regulator is mediated by the proteasome. FEBS Letters, 1994, 354, 50-52.	1.3	56
165	The yeast DOA4 gene encodes a deubiquitinating enzyme related to a product of the human tre-2 oncogene. Nature, 1993, 366, 313-319.	13.7	394
166	Multiple ubiquitin-conjugating enzymes participate in the in vivo degradation of the yeast MAT $\hat{l}\pm2$ repressor. Cell, 1993, 74, 357-369.	13.5	415
167	Ubiquitin and intracellular protein degradation. Current Opinion in Cell Biology, 1992, 4, 1024-1031.	2.6	76
168	The short-lived MAT alpha 2 transcriptional regulator is ubiquitinated in vivo Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 4606-4610.	3.3	255
169	Functions of Intracellular Protein Degradation in Yeast. , 1991, 13, 307-329.		2
170	In vivo degradation of a transcriptional regulator: The yeast $\hat{l}\pm 2$ repressor. Cell, 1990, 61, 697-708.	13.5	251
171	Three-dimensional organization of Drosophila melanogaster interphase nuclei. II. Chromosome spatial organization and gene regulation Journal of Cell Biology, 1987, 104, 1471-1483.	2.3	108
172	Three-dimensional organization of Drosophila melanogaster interphase nuclei. I. Tissue-specific aspects of polytene nuclear architecture Journal of Cell Biology, 1987, 104, 1455-1470.	2.3	119
173	Chromosome structure in four wild-type polytene tissues of Drosophila melanogaster. Chromosoma, 1987, 95, 197-208.	1.0	28
174	Spatial organization of chromosomes in the salivary gland nuclei of Drosophila melanogaster Journal of Cell Biology, 1986, 102, 112-123.	2.3	256
175	Light microscope based analysis of threeâ€dimensional structure: Applications to the study of Drosophila salivary gland nuclei. I. Data collection and analysis. Journal of Microscopy, 1985, 137, 241-252.	0.8	23
176	Characteristic folding pattern of polytene chromosomes in Drosophila salivary gland nuclei. Nature, 1984, 308, 414-421.	13.7	188
177	Properties of the T4 bacteriophage DNA replication apparatus: The T4 dda DNA helicase is required to pass a bound RNA polymerase molecule. Cell, 1983, 34, 115-123.	13.5	120
178	OtDUB from the Human Pathogen Orientia tsutsugamushi Modulates Host Membrane Trafficking by Multiple Mechanisms. Molecular and Cellular Biology, 0, , .	1.1	6