Michael Briggs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2936742/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Separation of rare gases and chiral molecules by selective binding in porous organic cages. Nature Materials, 2014, 13, 954-960.	27.5	532
2	Controlling electric double-layer capacitance and pseudocapacitance in heteroatom-doped carbons derived from hypercrosslinked microporous polymers. Nano Energy, 2018, 46, 277-289.	16.0	317
3	Hyperporous Carbons from Hypercrosslinked Polymers. Advanced Materials, 2016, 28, 9804-9810.	21.0	201
4	Porous Organic Cages for Gas Chromatography Separations. Chemistry of Materials, 2015, 27, 3207-3210.	6.7	169
5	Supramolecular Engineering of Intrinsic and Extrinsic Porosity in Covalent Organic Cages. Journal of the American Chemical Society, 2011, 133, 16566-16571.	13.7	146
6	Chemical and Structural Stability of Zirconiumâ€based Metal–Organic Frameworks with Large Threeâ€Dimensional Pores by Linker Engineering. Angewandte Chemie - International Edition, 2015, 54, 221-226.	13.8	141
7	High-throughput discovery of organic cages and catenanes using computational screening fused with robotic synthesis. Nature Communications, 2018, 9, 2849.	12.8	131
8	Porosity-engineered carbons for supercapacitive energy storage using conjugated microporous polymer precursors. Journal of Materials Chemistry A, 2016, 4, 7665-7673.	10.3	126
9	Side-chain control of porosity closure in single- and multiple-peptide-based porous materials by cooperative folding. Nature Chemistry, 2014, 6, 343-351.	13.6	124
10	Understanding gas capacity, guest selectivity, and diffusion in porous liquids. Chemical Science, 2017, 8, 2640-2651.	7.4	115
11	A smart and responsive crystalline porous organic cage membrane with switchable pore apertures for graded molecular sieving. Nature Materials, 2022, 21, 463-470.	27.5	108
12	Shape Selectivity by Guestâ€Driven Restructuring of a Porous Material. Angewandte Chemie - International Edition, 2014, 53, 4592-4596.	13.8	98
13	A Perspective on the Synthesis, Purification, and Characterization of Porous Organic Cages. Chemistry of Materials, 2017, 29, 149-157.	6.7	96
14	Accelerated robotic discovery of type II porous liquids. Chemical Science, 2019, 10, 9454-9465.	7.4	70
15	Controlling Gas Selectivity in Molecular Porous Liquids by Tuning the Cage Window Size. Angewandte Chemie - International Edition, 2020, 59, 7362-7366.	13.8	69
16	Computationally-Guided Synthetic Control over Pore Size in Isostructural Porous Organic Cages. ACS Central Science, 2017, 3, 734-742.	11.3	68
17	Trapping virtual pores by crystal retro-engineering. Nature Chemistry, 2015, 7, 153-159.	13.6	52
18	Dynamic flow synthesis of porous organic cages. Chemical Communications, 2015, 51, 17390-17393.	4.1	52

MICHAEL BRIGGS

#	Article	IF	CITATIONS
19	From Concept to Crystals via Prediction: Multiâ€Component Organic Cage Pots by Social Selfâ€Sorting. Angewandte Chemie - International Edition, 2019, 58, 16275-16281.	13.8	52
20	Swellable functional hypercrosslinked polymer networks for the uptake of chemical warfare agents. Polymer Chemistry, 2017, 8, 1914-1922.	3.9	44
21	Post-synthetic fluorination of Scholl-coupled microporous polymers for increased CO ₂ uptake and selectivity. Journal of Materials Chemistry A, 2019, 7, 549-557.	10.3	41
22	Shape Prediction for Supramolecular Organic Nanostructures: [4 + 4] Macrocyclic Tetrapods. Crystal Growth and Design, 2013, 13, 4993-5000.	3.0	38
23	Peripheryâ€Functionalized Porous Organic Cages. Chemistry - A European Journal, 2016, 22, 16547-16553.	3.3	38
24	Spongeâ€Like Behaviour in Isoreticular Cu(Glyâ€Hisâ€X) Peptideâ€Based Porous Materials. Chemistry - A European Journal, 2015, 21, 16027-16034.	3.3	36
25	Cage Doubling: Solvent-Mediated Re-equilibration of a [3 + 6] Prismatic Organic Cage to a Large [6 + 12] Truncated Tetrahedron. Crystal Growth and Design, 2018, 18, 2759-2764.	3.0	34
26	Computationally-inspired discovery of an unsymmetrical porous organic cage. Nanoscale, 2018, 10, 22381-22388.	5.6	34
27	Dual-stimuli responsive injectable microgel/solid drug nanoparticle nanocomposites for release of poorly soluble drugs. Nanoscale, 2017, 9, 6302-6314.	5.6	32
28	Investigating the breakdown of the nerve agent simulant methyl paraoxon and chemical warfare agents GB and VX using nitrogen containing bases. Organic and Biomolecular Chemistry, 2018, 16, 9285-9291.	2.8	32
29	Chirality as a tool for function in porous organic cages. Nanoscale, 2017, 9, 6783-6790.	5.6	31
30	Continuous and scalable synthesis of a porous organic cage by twin screw extrusion (TSE). Chemical Science, 2020, 11, 6582-6589.	7.4	30
31	A solution-processable dissymmetric porous organic cage. Molecular Systems Design and Engineering, 2018, 3, 223-227.	3.4	26
32	Modular Type III Porous Liquids Based on Porous Organic Cage Microparticles. Advanced Functional Materials, 2021, 31, 2106116.	14.9	26
33	Functional porous composites by blending with solution-processable molecular pores. Chemical Communications, 2016, 52, 6895-6898.	4.1	25
34	Controlling Gas Selectivity in Molecular Porous Liquids by Tuning the Cage Window Size. Angewandte Chemie, 2020, 132, 7432-7436.	2.0	25
35	A new approach to the synthesis of polycyclic structures. Tetrahedron Letters, 2004, 45, 6017-6020.	1.4	23
36	1,3-Diyne-Linked Conjugated Microporous Polymer for Selective CO ₂ Capture. Industrial & Engineering Chemistry Research, 2018, 57, 9254-9260.	3.7	23

MICHAEL BRIGGS

#	Article	IF	CITATIONS
37	From Concept to Crystals via Prediction: Multiâ€Component Organic Cage Pots by Social Selfâ€Sorting. Angewandte Chemie, 2019, 131, 16421-16427.	2.0	23
38	Ultraâ€Fast Molecular Rotors within Porous Organic Cages. Chemistry - A European Journal, 2017, 23, 17217-17221.	3.3	22
39	Synthesis of a Large, Shape-Flexible, Solvatomorphic Porous Organic Cage. Crystal Growth and Design, 2019, 19, 3647-3651.	3.0	21
40	Efficient separation of propane and propene by a hypercrosslinked polymer doped with Ag(<scp>i</scp>). Journal of Materials Chemistry A, 2019, 7, 25521-25525.	10.3	21
41	Pyreneâ€cored covalent organic polymers by thiopheneâ€based isomers, their gas adsorption, and photophysical properties. Journal of Polymer Science Part A, 2017, 55, 2383-2389.	2.3	18
42	Modular assembly of porous organic cage crystals: isoreticular quasiracemates and ternary co-crystal. CrystEngComm, 2017, 19, 4933-4941.	2.6	18
43	Materials Precursor Score: Modeling Chemists' Intuition for the Synthetic Accessibility of Porous Organic Cage Precursors. Journal of Chemical Information and Modeling, 2021, 61, 4342-4356.	5.4	14
44	Covalent and electrostatic incorporation of amines into hypercrosslinked polymers for increased CO ₂ selectivity. Journal of Polymer Science Part A, 2018, 56, 2513-2521.	2.3	9
45	A New Radical-Ionic Allylation Sequence. Synlett, 2005, 2005, 334-336.	1.8	3