## Neo D Martinez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2936349/publications.pdf Version: 2024-02-01



NEO D MADTINEZ

| #  | Article                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Allometric Trophic Networks From Individuals to Socio-Ecosystems: Consumer–Resource Theory of the Ecological Elephant in the Room. Frontiers in Ecology and Evolution, 2020, 8, . | 2.2  | 19        |
| 2  | Mutualism increases diversity, stability, and function of multiplex networks that integrate pollinators into food webs. Nature Communications, 2020, 11, 2182.                    | 12.8 | 48        |
| 3  | Predator traits determine food-web architecture across ecosystems. Nature Ecology and Evolution, 2019, 3, 919-927.                                                                | 7.8  | 157       |
| 4  | Ecogeographical rules and the macroecology of food webs. Global Ecology and Biogeography, 2019, 28, 1204-1218.                                                                    | 5.8  | 34        |
| 5  | Simulated evolution assembles more realistic food webs with more functionally similar species than invasion. Scientific Reports, 2019, 9, 18242.                                  | 3.3  | 6         |
| 6  | Environmentallyâ€induced noise dampens and reddens with increasing trophic level in a complex food<br>web. Oikos, 2019, 128, 608-620.                                             | 2.7  | 12        |
| 7  | Bringing Elton and Grinnell together: a quantitative framework to represent the biogeography of ecological interaction networks. Ecography, 2019, 42, 401-415.                    | 4.5  | 85        |
| 8  | On the prevalence and dynamics of inverted trophic pyramids and otherwise topâ€heavy communities.<br>Ecology Letters, 2018, 21, 439-454.                                          | 6.4  | 92        |
| 9  | Species traits and network structure predict the success and impacts of pollinator invasions. Nature Communications, 2018, 9, 2153.                                               | 12.8 | 57        |
| 10 | Degree heterogeneity and stability of ecological networks. Journal of the Royal Society Interface, 2017, 14, 20170189.                                                            | 3.4  | 20        |
| 11 | Consumptionâ€Based Conservation Targeting: Linking Biodiversity Loss to Upstream Demand through a<br>Global Wildlife Footprint. Conservation Letters, 2017, 10, 531-538.          | 5.7  | 38        |
| 12 | Robustness Trade-Offs in Model Food Webs. Advances in Ecological Research, 2017, 56, 263-291.                                                                                     | 2.7  | 29        |
| 13 | Community assembly on isolated islands: macroecology meets evolution. Global Ecology and Biogeography, 2016, 25, 769-780.                                                         | 5.8  | 62        |
| 14 | Simulating social-ecological systems: the Island Digital Ecosystem Avatars (IDEA) consortium.<br>GigaScience, 2016, 5, 14.                                                        | 6.4  | 15        |
| 15 | Niche partitioning due to adaptive foraging reverses effects of nestedness and connectance on pollination network stability. Ecology Letters, 2016, 19, 1277-1286.                | 6.4  | 91        |
| 16 | Fishing-induced life-history changes degrade and destabilize harvested ecosystems. Scientific Reports, 2016, 6, 22245.                                                            | 3.3  | 89        |
| 17 | The macroecology of phylogenetically structured hummingbird–plant networks. Global Ecology and<br>Biogeography, 2015, 24, 1212-1224.                                              | 5.8  | 100       |
| 18 | Effects of trophic similarity on community composition. Ecology Letters, 2014, 17, 1495-1506.                                                                                     | 6.4  | 31        |

NEO D MARTINEZ

| #  | Article                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | lterative design and development of the 'World of Balance' game: From ecosystem education to scientific discovery. , 2013, , .                                        |      | 4         |
| 20 | Parasites Affect Food Web Structure Primarily through Increased Diversity and Complexity. PLoS Biology, 2013, 11, e1001579.                                           | 5.6  | 233       |
| 21 | Food webs: reconciling the structure and function of biodiversity. Trends in Ecology and Evolution, 2012, 27, 689-697.                                                | 8.7  | 521       |
| 22 | Estimating trophic position in marine and estuarine food webs. Ecosphere, 2012, 3, 1-20.                                                                              | 2.2  | 35        |
| 23 | Approaching a state shift in Earth's biosphere. Nature, 2012, 486, 52-58.                                                                                             | 27.8 | 1,518     |
| 24 | More than a meal… integrating nonâ€feeding interactions into food webs. Ecology Letters, 2012, 15, 291-300.                                                           | 6.4  | 320       |
| 25 | Mechanistic theory and modelling of complex foodâ€web dynamics in Lake Constance. Ecology Letters, 2012, 15, 594-602.                                                 | 6.4  | 141       |
| 26 | A New Approach to Ecological Risk Assessment: Simulating Effects of Global Warming on Complex<br>Ecological Networks. , 2011, , 342-350.                              |      | 4         |
| 27 | Simple prediction of interaction strengths in complex food webs. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 187-191. | 7.1  | 286       |
| 28 | Predicting invasion success in complex ecological networks. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 1743-1754.             | 4.0  | 151       |
| 29 | Foodâ€web assembly during a classic biogeographic study: species'"trophic breadth―corresponds to<br>colonization order. Oikos, 2008, 117, 665-674.                    | 2.7  | 67        |
| 30 | Parasites in food webs: the ultimate missing links. Ecology Letters, 2008, 11, 533-546.                                                                               | 6.4  | 716       |
| 31 | Success and its limits among structural models of complex food webs. Journal of Animal Ecology, 2008, 77, 512-519.                                                    | 2.8  | 111       |
| 32 | Compilation and Network Analyses of Cambrian Food Webs. PLoS Biology, 2008, 6, e102.                                                                                  | 5.6  | 211       |
| 33 | The "Goldilocks factor" in food webs. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4079-4080.                          | 7.1  | 30        |
| 34 | Food-web assembly during a classic biogeographic study: species' "trophic breadth" corresponds to colonization order. Oikos, 2008, .                                  | 2.7  | 0         |
| 35 | DYNAMIC NETWORK MODELS OF ECOLOGICAL DIVERSITY, COMPLEXITY, AND NONLINEAR PERSISTENCE.<br>Complex Systems and Interdisciplinary Science, 2007, , 423-447.             | 0.2  | 0         |
| 36 | RESPONSE OF COMPLEX FOOD WEBS TO REALISTIC EXTINCTION SEQUENCES. Ecology, 2007, 88, 671-682.                                                                          | 3.2  | 164       |

NEO D MARTINEZ

| #  | Article                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Homage to Yodzis and Innes 1992: Scaling up Feeding-Based Population Dynamics to Complex Ecological Networks. , 2007, , 37-51.                  |      | 10        |
| 38 | CONSUMER–RESOURCE BODY-SIZE RELATIONSHIPS IN NATURAL FOOD WEBS. Ecology, 2006, 87, 2411-2417.                                                   | 3.2  | 568       |
| 39 | The structure of food webs along river networks. Ecography, 2006, 29, 3-10.                                                                     | 4.5  | 41        |
| 40 | Non-omnivorous generality promotes population stability. Biology Letters, 2006, 2, 374-377.                                                     | 2.3  | 11        |
| 41 | Allometric scaling enhances stability in complex food webs. Ecology Letters, 2006, 9, 1228-1236.                                                | 6.4  | 501       |
| 42 | Ontologies for ecoinformatics. Web Semantics, 2006, 4, 237-242.                                                                                 | 2.9  | 34        |
| 43 | Scaling up keystone effects from simple to complex ecological networks. Ecology Letters, 2005, 8, 1317-1325.                                    | 6.4  | 156       |
| 44 | Interactive 3D visualization of highly connected ecological networks on the WWW. , 2005, , .                                                    |      | 6         |
| 45 | BODY SIZES OF CONSUMERS AND THEIR RESOURCES. Ecology, 2005, 86, 2545-2545.                                                                      | 3.2  | 105       |
| 46 | FROM FOOD WEBS TO ECOLOGICAL NETWORKS. , 2005, , 27-36.                                                                                         |      | 12        |
| 47 | Modeling food-web dynamics: complexity–stability implications. , 2005, , 117-129.                                                               |      | 44        |
| 48 | <title>Webs on the Web (WOW): 3D visualization of ecological networks on the WWW for collaborative research and education</title> . , 2004, , . |      | 28        |
| 49 | Estimating the richness of species with variable mobility. Oikos, 2004, 105, 292-300.                                                           | 2.7  | 98        |
| 50 | Unified spatial scaling of species and their trophic interactions. Nature, 2004, 428, 167-171.                                                  | 27.8 | 114       |
| 51 | Stabilization of chaotic and non-permanent food-web dynamics. European Physical Journal B, 2004, 38, 297-303.                                   | 1.5  | 158       |
| 52 | Limits to Trophic Levels and Omnivory in Complex Food Webs: Theory and Data. American Naturalist, 2004, 163, 458-468.                           | 2.1  | 267       |
| 53 | Network structure and robustness of marine food webs. Marine Ecology - Progress Series, 2004, 273, 291-302.                                     | 1.9  | 322       |
| 54 | ESTIMATING SPECIES RICHNESS: SENSITIVITY TO SAMPLE COVERAGE AND INSENSITIVITY TO SPATIAL PATTERNS. Ecology, 2003, 84, 2364-2377.                | 3.2  | 271       |

NEO D MARTINEZ

| #  | Article                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Comment on "Foraging Adaptation and the Relationship Between Food-Web Complexity and Stability".<br>Science, 2003, 301, 918b-918.                                                | 12.6 | 59        |
| 56 | Food-web structure and network theory: The role of connectance and size. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12917-12922. | 7.1  | 1,117     |
| 57 | Two degrees of separation in complex food webs. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12913-12916.                          | 7.1  | 324       |
| 58 | Network structure and biodiversity loss in food webs: robustness increases with connectance.<br>Ecology Letters, 2002, 5, 558-567.                                               | 6.4  | 1,344     |
| 59 | Predators, parasitoids and pathogens: species richness, trophic generality and body sizes in a natural food web. Journal of Animal Ecology, 2000, 69, 1-15.                      | 2.8  | 267       |
| 60 | Simple rules yield complex food webs. Nature, 2000, 404, 180-183.                                                                                                                | 27.8 | 1,166     |
| 61 | TROPHIC RANK AND THE SPECIES–AREA RELATIONSHIP. Ecology, 1999, 80, 1495-1504.                                                                                                    | 3.2  | 306       |
| 62 | EFFECTS OF SAMPLING EFFORT ON CHARACTERIZATION OF FOOD-WEB STRUCTURE. Ecology, 1999, 80, 1044-1055.                                                                              | 3.2  | 231       |
| 63 | Source food webs as estimators of community web structure. Acta Oecologica, 1997, 18, 575-586.                                                                                   | 1.1  | 11        |
| 64 | Causes and Effects in Food Webs: Do Generalities Exist?. , 1996, , 179-184.                                                                                                      |      | 2         |
| 65 | Scale and Food-Web Structure: From Local to Global. Oikos, 1995, 73, 148.                                                                                                        | 2.7  | 70        |
| 66 | Unifying Ecological Subdisciplines with Ecosystem Food Webs. , 1995, , 166-175.                                                                                                  |      | 17        |
| 67 | Scale-Dependent Constraints on Food-Web Structure. American Naturalist, 1994, 144, 935-953.                                                                                      | 2.1  | 94        |
| 68 | Effect of Scale on Food Web Structure. Science, 1993, 260, 242-243.                                                                                                              | 12.6 | 85        |
| 69 | Effects of Resolution on Food Web Structure. Oikos, 1993, 66, 403.                                                                                                               | 2.7  | 108       |
| 70 | Constant Connectance in Community Food Webs. American Naturalist, 1992, 139, 1208-1218.                                                                                          | 2.1  | 359       |
| 71 | Artifacts or Attributes? Effects of Resolution on the Little Rock Lake Food Web. Ecological<br>Monographs, 1991, 61, 367-392.                                                    | 5.4  | 594       |