Neo D Martinez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2936349/publications.pdf

Version: 2024-02-01

71 papers 14,400 citations

57758 44 h-index 61 g-index

75 all docs 75 docs citations

75 times ranked 12313 citing authors

#	Article	IF	Citations
1	Approaching a state shift in Earth's biosphere. Nature, 2012, 486, 52-58.	27.8	1,518
2	Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecology Letters, 2002, 5, 558-567.	6.4	1,344
3	Simple rules yield complex food webs. Nature, 2000, 404, 180-183.	27.8	1,166
4	Food-web structure and network theory: The role of connectance and size. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12917-12922.	7.1	1,117
5	Parasites in food webs: the ultimate missing links. Ecology Letters, 2008, 11, 533-546.	6.4	716
6	Artifacts or Attributes? Effects of Resolution on the Little Rock Lake Food Web. Ecological Monographs, 1991, 61, 367-392.	5.4	594
7	CONSUMER–RESOURCE BODY-SIZE RELATIONSHIPS IN NATURAL FOOD WEBS. Ecology, 2006, 87, 2411-2417.	3.2	568
8	Food webs: reconciling the structure and function of biodiversity. Trends in Ecology and Evolution, 2012, 27, 689-697.	8.7	521
9	Allometric scaling enhances stability in complex food webs. Ecology Letters, 2006, 9, 1228-1236.	6.4	501
10	Constant Connectance in Community Food Webs. American Naturalist, 1992, 139, 1208-1218.	2.1	359
11	Two degrees of separation in complex food webs. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12913-12916.	7.1	324
12	Network structure and robustness of marine food webs. Marine Ecology - Progress Series, 2004, 273, 291-302.	1.9	322
13	More than a meal… integrating nonâ€feeding interactions into food webs. Ecology Letters, 2012, 15, 291-300.	6.4	320
14	TROPHIC RANK AND THE SPECIES–AREA RELATIONSHIP. Ecology, 1999, 80, 1495-1504.	3.2	306
15	Simple prediction of interaction strengths in complex food webs. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 187-191.	7.1	286
16	ESTIMATING SPECIES RICHNESS: SENSITIVITY TO SAMPLE COVERAGE AND INSENSITIVITY TO SPATIAL PATTERNS. Ecology, 2003, 84, 2364-2377.	3.2	271
17	Predators, parasitoids and pathogens: species richness, trophic generality and body sizes in a natural food web. Journal of Animal Ecology, 2000, 69, 1-15.	2.8	267
18	Limits to Trophic Levels and Omnivory in Complex Food Webs: Theory and Data. American Naturalist, 2004, 163, 458-468.	2.1	267

#	Article	IF	CITATIONS
19	Parasites Affect Food Web Structure Primarily through Increased Diversity and Complexity. PLoS Biology, 2013, 11, e1001579.	5 . 6	233
20	EFFECTS OF SAMPLING EFFORT ON CHARACTERIZATION OF FOOD-WEB STRUCTURE. Ecology, 1999, 80, 1044-1055.	3. 2	231
21	Compilation and Network Analyses of Cambrian Food Webs. PLoS Biology, 2008, 6, e102.	5. 6	211
22	RESPONSE OF COMPLEX FOOD WEBS TO REALISTIC EXTINCTION SEQUENCES. Ecology, 2007, 88, 671-682.	3.2	164
23	Stabilization of chaotic and non-permanent food-web dynamics. European Physical Journal B, 2004, 38, 297-303.	1.5	158
24	Predator traits determine food-web architecture across ecosystems. Nature Ecology and Evolution, 2019, 3, 919-927.	7.8	157
25	Scaling up keystone effects from simple to complex ecological networks. Ecology Letters, 2005, 8, 1317-1325.	6.4	156
26	Predicting invasion success in complex ecological networks. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 1743-1754.	4.0	151
27	Mechanistic theory and modelling of complex foodâ€web dynamics in Lake Constance. Ecology Letters, 2012, 15, 594-602.	6.4	141
28	Unified spatial scaling of species and their trophic interactions. Nature, 2004, 428, 167-171.	27.8	114
29	Success and its limits among structural models of complex food webs. Journal of Animal Ecology, 2008, 77, 512-519.	2.8	111
30	Effects of Resolution on Food Web Structure. Oikos, 1993, 66, 403.	2.7	108
31	BODY SIZES OF CONSUMERS AND THEIR RESOURCES. Ecology, 2005, 86, 2545-2545.	3.2	105
32	The macroecology of phylogenetically structured hummingbird–plant networks. Global Ecology and Biogeography, 2015, 24, 1212-1224.	5.8	100
33	Estimating the richness of species with variable mobility. Oikos, 2004, 105, 292-300.	2.7	98
34	Scale-Dependent Constraints on Food-Web Structure. American Naturalist, 1994, 144, 935-953.	2.1	94
35	On the prevalence and dynamics of inverted trophic pyramids and otherwise topâ€heavy communities. Ecology Letters, 2018, 21, 439-454.	6.4	92
36	Niche partitioning due to adaptive foraging reverses effects of nestedness and connectance on pollination network stability. Ecology Letters, 2016, 19, 1277-1286.	6.4	91

#	Article	IF	Citations
37	Fishing-induced life-history changes degrade and destabilize harvested ecosystems. Scientific Reports, 2016, 6, 22245.	3.3	89
38	Effect of Scale on Food Web Structure. Science, 1993, 260, 242-243.	12.6	85
39	Bringing Elton and Grinnell together: a quantitative framework to represent the biogeography of ecological interaction networks. Ecography, 2019, 42, 401-415.	4.5	85
40	Scale and Food-Web Structure: From Local to Global. Oikos, 1995, 73, 148.	2.7	70
41	Foodâ€web assembly during a classic biogeographic study: species'"trophic breadth―corresponds to colonization order. Oikos, 2008, 117, 665-674.	2.7	67
42	Community assembly on isolated islands: macroecology meets evolution. Global Ecology and Biogeography, 2016, 25, 769-780.	5.8	62
43	Comment on "Foraging Adaptation and the Relationship Between Food-Web Complexity and Stability". Science, 2003, 301, 918b-918.	12.6	59
44	Species traits and network structure predict the success and impacts of pollinator invasions. Nature Communications, 2018, 9, 2153.	12.8	57
45	Mutualism increases diversity, stability, and function of multiplex networks that integrate pollinators into food webs. Nature Communications, 2020, 11, 2182.	12.8	48
46	Modeling food-web dynamics: complexity–stability implications. , 2005, , 117-129.		44
47	The structure of food webs along river networks. Ecography, 2006, 29, 3-10.	4.5	41
48	Consumptionâ€Based Conservation Targeting: Linking Biodiversity Loss to Upstream Demand through a Global Wildlife Footprint. Conservation Letters, 2017, 10, 531-538.	5.7	38
49	Estimating trophic position in marine and estuarine food webs. Ecosphere, 2012, 3, 1-20.	2.2	35
50	Ontologies for ecoinformatics. Web Semantics, 2006, 4, 237-242.	2.9	34
51	Ecogeographical rules and the macroecology of food webs. Global Ecology and Biogeography, 2019, 28, 1204-1218.	5.8	34
52	Effects of trophic similarity on community composition. Ecology Letters, 2014, 17, 1495-1506.	6.4	31
53	The "Goldilocks factor" in food webs. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4079-4080.	7.1	30
54	Robustness Trade-Offs in Model Food Webs. Advances in Ecological Research, 2017, 56, 263-291.	2.7	29

#	Article	IF	Citations
55	<title>Webs on the Web (WOW): 3D visualization of ecological networks on the WWW for collaborative research and education /title>., 2004, , .</td><td></td><td>28</td></tr><tr><td>56</td><td>Degree heterogeneity and stability of ecological networks. Journal of the Royal Society Interface, 2017, 14, 20170189.</td><td>3.4</td><td>20</td></tr><tr><td>57</td><td>Allometric Trophic Networks From Individuals to Socio-Ecosystems: Consumer–Resource Theory of the Ecological Elephant in the Room. Frontiers in Ecology and Evolution, 2020, 8, .</td><td>2.2</td><td>19</td></tr><tr><td>58</td><td>Unifying Ecological Subdisciplines with Ecosystem Food Webs. , 1995, , 166-175.</td><td></td><td>17</td></tr><tr><td>59</td><td>Simulating social-ecological systems: the Island Digital Ecosystem Avatars (IDEA) consortium. GigaScience, 2016, 5, 14.</td><td>6.4</td><td>15</td></tr><tr><td>60</td><td>Environmentallyâ€induced noise dampens and reddens with increasing trophic level in a complex food web. Oikos, 2019, 128, 608-620.</td><td>2.7</td><td>12</td></tr><tr><td>61</td><td>FROM FOOD WEBS TO ECOLOGICAL NETWORKS. , 2005, , 27-36.</td><td></td><td>12</td></tr><tr><td>62</td><td>Source food webs as estimators of community web structure. Acta Oecologica, 1997, 18, 575-586.</td><td>1.1</td><td>11</td></tr><tr><td>63</td><td>Non-omnivorous generality promotes population stability. Biology Letters, 2006, 2, 374-377.</td><td>2.3</td><td>11</td></tr><tr><td>64</td><td>Homage to Yodzis and Innes 1992: Scaling up Feeding-Based Population Dynamics to Complex Ecological Networks., 2007,, 37-51.</td><td></td><td>10</td></tr><tr><td>65</td><td>Interactive 3D visualization of highly connected ecological networks on the WWW., 2005, , .</td><td></td><td>6</td></tr><tr><td>66</td><td>Simulated evolution assembles more realistic food webs with more functionally similar species than invasion. Scientific Reports, 2019, 9, 18242.</td><td>3.3</td><td>6</td></tr><tr><td>67</td><td>Iterative design and development of the 'World of Balance' game: From ecosystem education to scientific discovery. , 2013, , .</td><td></td><td>4</td></tr><tr><td>68</td><td>A New Approach to Ecological Risk Assessment: Simulating Effects of Global Warming on Complex Ecological Networks. , <math>2011</math>, , <math>342</math>-<math>350</math>.</td><td></td><td>4</td></tr><tr><td>69</td><td>Causes and Effects in Food Webs: Do Generalities Exist?. , 1996, , 179-184.</td><td></td><td>2</td></tr><tr><td>70</td><td>DYNAMIC NETWORK MODELS OF ECOLOGICAL DIVERSITY, COMPLEXITY, AND NONLINEAR PERSISTENCE. Complex Systems and Interdisciplinary Science, 2007, , 423-447.</td><td>0.2</td><td>0</td></tr><tr><td>71</td><td>Food-web assembly during a classic biogeographic study: species' "trophic breadth" corresponds to colonization order. Oikos, 2008, .</td><td>2.7</td><td>0</td></tr></tbody></table></title>		