
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2935959/publications.pdf Version: 2024-02-01

BING-LE NI

#	Article	IF	CITATIONS
1	Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Research, 2019, 152, 21-37.	11.3	1,069
2	Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 14971-15005.	10.3	501
3	Dissecting microbial community structure and methane-producing pathways of a full-scale anaerobic reactor digesting activated sludge from wastewater treatment by metagenomic sequencing. Microbial Cell Factories, 2015, 14, 33.	4.0	323
4	The roles of free ammonia (FA) in biological wastewater treatment processes: A review. Environment International, 2019, 123, 10-19.	10.0	294
5	Polyvinyl Chloride Microplastics Affect Methane Production from the Anaerobic Digestion of Waste Activated Sludge through Leaching Toxic Bisphenol-A. Environmental Science & Technology, 2019, 53, 2509-2517.	10.0	279
6	Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater. Water Research, 2009, 43, 751-761.	11.3	258
7	Challenges in the application of microbial fuel cells to wastewater treatment and energy production: A mini review. Science of the Total Environment, 2018, 639, 910-920.	8.0	225
8	Graphitic carbon nitride with different dimensionalities for energy and environmental applications. Nano Research, 2020, 13, 18-37.	10.4	214
9	Competitive adsorption of heavy metals in aqueous solution onto biochar derived from anaerobically digested sludge. Chemosphere, 2019, 219, 351-357.	8.2	212
10	Electron competition among nitrogen oxides reduction during methanol-utilizing denitrification in wastewater treatment. Water Research, 2013, 47, 3273-3281.	11.3	200
11	Revealing the Mechanisms of Polyethylene Microplastics Affecting Anaerobic Digestion of Waste Activated Sludge. Environmental Science & Technology, 2019, 53, 9604-9613.	10.0	199
12	Iridium-based nanomaterials for electrochemical water splitting. Nano Energy, 2020, 78, 105270.	16.0	192
13	N2O production rate of an enriched ammonia-oxidising bacteria culture exponentially correlates to its ammonia oxidation rate. Water Research, 2012, 46, 3409-3419.	11.3	190
14	Achieving Stable Mainstream Nitrogen Removal via the Nitrite Pathway by Sludge Treatment Using Free Ammonia. Environmental Science & Technology, 2017, 51, 9800-9807.	10.0	186
15	Soluble microbial products and their implications in mixed culture biotechnology. Trends in Biotechnology, 2011, 29, 454-463.	9.3	184
16	The underlying mechanism of calcium peroxide pretreatment enhancing methane production from anaerobic digestion of waste activated sludge. Water Research, 2019, 164, 114934.	11.3	184
17	Photocatalytic conversion of lignocellulosic biomass to valuable products. Green Chemistry, 2019, 21, 4266-4289.	9.0	180
18	Occurrence State and Molecular Structure Analysis of Extracellular Proteins with Implications on the Dewaterability of Waste-Activated Sludge. Environmental Science & Technology, 2017, 51, 9235-9243.	10.0	174

#	Article	IF	CITATIONS
19	Effect of pH on N2O reduction and accumulation during denitrification by methanol utilizing denitrifiers. Water Research, 2012, 46, 4832-4840.	11.3	169
20	Characterization of extracellular polymeric substances produced by mixed microorganisms in activated sludge with gel-permeating chromatography, excitation–emission matrix fluorescence spectroscopy measurement and kinetic modeling. Water Research, 2009, 43, 1350-1358.	11.3	163
21	Free ammonia enhances dark fermentative hydrogen production from waste activated sludge. Water Research, 2018, 133, 272-281.	11.3	163
22	Identification and quantification of anammox bacteria in eight nitrogen removal reactors. Water Research, 2010, 44, 5014-5020.	11.3	161
23	Modeling Nitrous Oxide Production during Biological Nitrogen Removal via Nitrification and Denitrification: Extensions to the General ASM Models. Environmental Science & Technology, 2011, 45, 7768-7776.	10.0	161
24	Anaerobic membrane bioreactors for antibiotic wastewater treatment: Performance and membrane fouling issues. Bioresource Technology, 2018, 267, 714-724.	9.6	154
25	Fe(II) catalyzing sodium percarbonate facilitates the dewaterability of waste activated sludge: Performance, mechanism, and implication. Water Research, 2020, 174, 115626.	11.3	150
26	The combined effect of dissolved oxygen and nitrite on N2O production by ammonia oxidizing bacteria in an enriched nitrifying sludge. Water Research, 2015, 73, 29-36.	11.3	147
27	Defect engineering of oxide perovskites for catalysis and energy storage: synthesis of chemistry and materials science. Chemical Society Reviews, 2021, 50, 10116-10211.	38.1	140
28	Free nitrous acid promotes hydrogen production from dark fermentation of waste activated sludge. Water Research, 2018, 145, 113-124.	11.3	137
29	Calcium peroxide promotes hydrogen production from dark fermentation of waste activated sludge. Chemical Engineering Journal, 2019, 355, 22-32.	12.7	137
30	Aged refuse enhances anaerobic digestion of waste activated sludge. Water Research, 2017, 123, 724-733.	11.3	136
31	Polyethylene terephthalate microplastics affect hydrogen production from alkaline anaerobic fermentation of waste activated sludge through altering viability and activity of anaerobic microorganisms. Water Research, 2019, 163, 114881.	11.3	136
32	Catalytic reduction of nitrogen to produce ammonia by bismuth-based catalysts: state of the art and future prospects. Materials Horizons, 2020, 7, 1014-1029.	12.2	134
33	Metagenomic analysis of anammox communities in three different microbial aggregates. Environmental Microbiology, 2016, 18, 2979-2993.	3.8	133
34	Boride-based electrocatalysts: Emerging candidates for water splitting. Nano Research, 2020, 13, 293-314.	10.4	133
35	Microbial and Physicochemical Characteristics of Compact Anaerobic Ammonium-Oxidizing Granules in an Upflow Anaerobic Sludge Blanket Reactor. Applied and Environmental Microbiology, 2010, 76, 2652-2656.	3.1	131
36	Zero valent iron simultaneously enhances methane production and sulfate reduction in anaerobic granular sludge reactors. Water Research, 2015, 75, 292-300.	11.3	129

#	Article	IF	CITATIONS
37	Unveiling the mechanisms of medium-chain fatty acid production from waste activated sludge alkaline fermentation liquor through physiological, thermodynamic and metagenomic investigations. Water Research, 2020, 169, 115218.	11.3	124
38	The effect of dissolved oxygen on N 2 O production by ammonia-oxidizing bacteria in an enriched nitrifying sludge. Water Research, 2014, 66, 12-21.	11.3	123
39	Evaluation on the microbial interactions of anaerobic ammonium oxidizers and heterotrophs in Anammox biofilm. Water Research, 2012, 46, 4645-4652.	11.3	122
40	Fractionating soluble microbial products in the activated sludge process. Water Research, 2010, 44, 2292-2302.	11.3	120
41	Modeling Electron Competition among Nitrogen Oxides Reduction and N ₂ O Accumulation in Denitrification. Environmental Science & Technology, 2013, 47, 11083-11091.	10.0	119
42	Modeling of Nitrous Oxide Production by Autotrophic Ammonia-Oxidizing Bacteria with Multiple Production Pathways. Environmental Science & Technology, 2014, 48, 3916-3924.	10.0	110
43	Impacts of organics on the microbial ecology of wastewater anammox processes: Recent advances and meta-analysis. Water Research, 2021, 191, 116817.	11.3	108
44	Tuning electronic property and surface reconstruction of amorphous iron borides via W-P co-doping for highly efficient oxygen evolution. Applied Catalysis B: Environmental, 2021, 288, 120037.	20.2	108
45	Recent advances in mathematical modeling of nitrous oxides emissions from wastewater treatment processes. Water Research, 2015, 87, 336-346.	11.3	106
46	Revisiting Microplastics in Landfill Leachate: Unnoticed Tiny Microplastics and Their Fate in Treatment Works. Water Research, 2021, 190, 116784.	11.3	106
47	Emerging artificial nitrogen cycle processes through novel electrochemical and photochemical synthesis. Materials Today, 2021, 46, 212-233.	14.2	104
48	Mathematical Modeling of Nitrous Oxide (N ₂ O) Emissions from Full-Scale Wastewater Treatment Plants. Environmental Science & Technology, 2013, 47, 7795-7803.	10.0	102
49	Modeling a granuleâ€based anaerobic ammonium oxidizing (ANAMMOX) process. Biotechnology and Bioengineering, 2009, 103, 490-499.	3.3	101
50	Unraveling microbial structure and diversity of activated sludge in a full-scale simultaneous nitrogen and phosphorus removal plant using metagenomic sequencing. Enzyme and Microbial Technology, 2017, 102, 16-25.	3.2	100
51	Understanding the fate and impact of capsaicin in anaerobic co-digestion of food waste and waste activated sludge. Water Research, 2021, 188, 116539.	11.3	99
52	Characterization of the size-fractionated biomacromolecules: Tracking their role and fate in a membrane bioreactor. Water Research, 2011, 45, 4661-4671.	11.3	98
53	Insights into the microbial response of anaerobic granular sludge during long-term exposure to polyethylene terephthalate microplastics. Water Research, 2020, 179, 115898.	11.3	96
54	Stratified Microbial Structure and Activity in Sulfide- and Methane-Producing Anaerobic Sewer Biofilms. Applied and Environmental Microbiology, 2014, 80, 7042-7052.	3.1	95

#	Article	IF	CITATIONS
55	Mechanistic insights into the effect of poly ferric sulfate on anaerobic digestion of waste activated sludge. Water Research, 2021, 189, 116645.	11.3	95
56	Coagulation removal and photocatalytic degradation of microplastics in urban waters. Chemical Engineering Journal, 2021, 416, 129123.	12.7	95
57	Zerovalent Iron Effectively Enhances Medium-Chain Fatty Acids Production from Waste Activated Sludge through Improving Sludge Biodegradability and Electron Transfer Efficiency. Environmental Science & Technology, 2020, 54, 10904-10915.	10.0	94
58	Effect of poly aluminum chloride on dark fermentative hydrogen accumulation from waste activated sludge. Water Research, 2019, 153, 217-228.	11.3	93
59	Enhanced short-chain fatty acids production from waste activated sludge by sophorolipid: Performance, mechanism, and implication. Bioresource Technology, 2019, 284, 456-465.	9.6	91
60	Accelerated separation of photogenerated charge carriers and enhanced photocatalytic performance of g-C3N4 by Bi2S3 nanoparticles. Chinese Journal of Catalysis, 2020, 41, 249-258.	14.0	91
61	Improving the treatment of waste activated sludge using calcium peroxide. Water Research, 2020, 187, 116440.	11.3	90
62	Electrocatalysts for acidic oxygen evolution reaction: Achievements and perspectives. Nano Energy, 2020, 78, 105392.	16.0	86
63	Towards hydrogen production from waste activated sludge: Principles, challenges and perspectives. Renewable and Sustainable Energy Reviews, 2021, 135, 110283.	16.4	86
64	Evaluating four mathematical models for nitrous oxide production by autotrophic ammoniaâ€oxidizing bacteria. Biotechnology and Bioengineering, 2013, 110, 153-163.	3.3	85
65	Evaluation of Nitrous Oxide Emission from Sulfide- and Sulfur-Based Autotrophic Denitrification Processes. Environmental Science & amp; Technology, 2016, 50, 9407-9415.	10.0	85
66	Free nitrous acid-based nitrifying sludge treatment in a two-sludge system enhances nutrient removal from low-carbon wastewater. Bioresource Technology, 2017, 244, 920-928.	9.6	83
67	Enhanced high-quality biomethane production from anaerobic digestion of primary sludge by corn stover biochar. Bioresource Technology, 2020, 306, 123159.	9.6	83
68	Polystyrene nanoplastics reshape the anaerobic granular sludge for recovering methane from wastewater. Water Research, 2020, 182, 116041.	11.3	83
69	Medium-Chain fatty acids and long-chain alcohols production from waste activated sludge via two-stage anaerobic fermentation. Water Research, 2020, 186, 116381.	11.3	82
70	Long-Term Effects of Polyvinyl Chloride Microplastics on Anaerobic Granular Sludge for Recovering Methane from Wastewater. Environmental Science & Technology, 2020, 54, 9662-9671.	10.0	81
71	Modeling of Simultaneous Anaerobic Methane and Ammonium Oxidation in a Membrane Biofilm Reactor. Environmental Science & Technology, 2014, 48, 9540-9547.	10.0	80
72	Free Ammonia-Based Pretreatment Promotes Short-Chain Fatty Acid Production from Waste Activated Sludge. ACS Sustainable Chemistry and Engineering, 2018, 6, 9120-9129.	6.7	79

#	Article	IF	CITATIONS
73	Sulfide and methane production in sewer sediments. Water Research, 2015, 70, 350-359.	11.3	78
74	Zero valent iron enhances methane production from primary sludge in anaerobic digestion. Chemical Engineering Journal, 2018, 351, 1159-1165.	12.7	78
75	Insight into greenhouse gases emissions from the two popular treatment technologies in municipal wastewater treatment processes. Science of the Total Environment, 2019, 671, 1302-1313.	8.0	78
76	New perspectives on microbial communities and biological nitrogen removal processes in wastewater treatment systems. Bioresource Technology, 2020, 297, 122491.	9.6	78
77	Evaluation of mainstream nitrogen removal by simultaneous partial nitrification, anammox and denitrification (SNAD) process in a granule-based reactor. Chemical Engineering Journal, 2017, 327, 973-981.	12.7	77
78	Improved methane production from waste activated sludge by combining free ammonia with heat pretreatment: Performance, mechanisms and applications. Bioresource Technology, 2018, 268, 230-236.	9.6	77
79	Quantifying nitrous oxide production pathways in wastewater treatment systems using isotope technology – A critical review. Water Research, 2017, 122, 96-113.	11.3	76
80	Interaction between perfluorooctanoic acid and aerobic granular sludge. Water Research, 2020, 169, 115249.	11.3	75
81	Mathematical modeling of aerobic granular sludge: A review. Biotechnology Advances, 2010, 28, 895-909.	11.7	74
82	Biotransformation of pharmaceuticals by ammonia oxidizing bacteria in wastewater treatment processes. Science of the Total Environment, 2016, 566-567, 796-805.	8.0	74
83	AHL-mediated quorum sensing regulates the variations of microbial community and sludge properties of aerobic granular sludge under low organic loading. Environment International, 2019, 130, 104946.	10.0	74
84	Recent advances in electrocatalysts for halogenated organic pollutant degradation. Environmental Science: Nano, 2019, 6, 2332-2366.	4.3	74
85	Characterization of autotrophic and heterotrophic soluble microbial product (SMP) fractions from activated sludge. Water Research, 2012, 46, 6210-6217.	11.3	73
86	Approach of describing dynamic production of volatile fatty acids from sludge alkaline fermentation. Bioresource Technology, 2017, 238, 343-351.	9.6	73
87	Clarifying the Role of Free Ammonia in the Production of Short-Chain Fatty Acids from Waste Activated Sludge Anaerobic Fermentation. ACS Sustainable Chemistry and Engineering, 2018, 6, 14104-14113.	6.7	73
88	Enhanced dewaterability of anaerobically digested sludge by in-situ free nitrous acid treatment. Water Research, 2020, 169, 115264.	11.3	73
89	Modeling simultaneous autotrophic and heterotrophic growth in aerobic granules. Water Research, 2008, 42, 1583-1594.	11.3	72
90	The inhibitory impacts of nano-graphene oxide on methane production from waste activated sludge in anaerobic digestion. Science of the Total Environment, 2019, 646, 1376-1384.	8.0	72

#	Article	IF	CITATIONS
91	Enhanced Short-Chain Fatty Acids from Waste Activated Sludge by Heat–CaO ₂ Advanced Thermal Hydrolysis Pretreatment: Parameter Optimization, Mechanisms, and Implications. ACS Sustainable Chemistry and Engineering, 2019, 7, 3544-3555.	6.7	71
92	Activation of nitrite by freezing process for anaerobic digestion enhancement of waste activated sludge: Performance and mechanisms. Chemical Engineering Journal, 2020, 387, 124147.	12.7	70
93	Evaluating two concepts for the modelling of intermediates accumulation during biological denitrification in wastewater treatment. Water Research, 2015, 71, 21-31.	11.3	69
94	Insight into biological phosphate recovery from sewage. Bioresource Technology, 2016, 218, 874-881.	9.6	69
95	A new approach to simultaneous ammonium and dissolved methane removal from anaerobic digestion liquor: A model-based investigation of feasibility. Water Research, 2015, 85, 295-303.	11.3	68
96	Thermal-alkaline pretreatment of polyacrylamide flocculated waste activated sludge: Process optimization and effects on anaerobic digestion and polyacrylamide degradation. Bioresource Technology, 2019, 281, 158-167.	9.6	68
97	Microbial Products of Activated Sludge in Biological Wastewater Treatment Systems: A Critical Reviews in Environmental Science and Technology, 2012, 42, 187-223.	12.8	67
98	Microplastics Mitigation in Sewage Sludge through Pyrolysis: The Role of Pyrolysis Temperature. Environmental Science and Technology Letters, 2020, 7, 961-967.	8.7	67
99	Methane emission from sewers. Science of the Total Environment, 2015, 524-525, 40-51.	8.0	66
100	Emerging alternative for artificial ammonia synthesis through catalytic nitrate reduction. Journal of Materials Science and Technology, 2021, 77, 163-168.	10.7	66
101	Comparing the value of bioproducts from different stages of anaerobic membrane bioreactors. Bioresource Technology, 2016, 214, 816-825.	9.6	65
102	Heat pretreatment assists free ammonia to enhance hydrogen production from waste activated sludge. Bioresource Technology, 2019, 283, 316-325.	9.6	65
103	Impact of roxithromycin on waste activated sludge anaerobic digestion: Methane production, carbon transformation and antibiotic resistance genes. Science of the Total Environment, 2020, 703, 134899.	8.0	65
104	Appropriate Fe (II) Addition Significantly Enhances Anaerobic Ammonium Oxidation (Anammox) Activity through Improving the Bacterial Growth Rate. Scientific Reports, 2015, 5, 8204.	3.3	64
105	Mechanisms of potassium permanganate pretreatment improving anaerobic fermentation performance of waste activated sludge. Chemical Engineering Journal, 2021, 406, 126797.	12.7	64
106	Digestion liquid based alkaline pretreatment of waste activated sludge promotes methane production from anaerobic digestion. Water Research, 2021, 199, 117198.	11.3	63
107	Fabrication of CN75/NH2-MIL-53(Fe) p-n heterojunction with wide spectral response for efficiently photocatalytic Cr(VI) reduction. Journal of Alloys and Compounds, 2022, 891, 161994.	5.5	63
108	Modeling nitrogen removal with partial nitritation and anammox in one floc-based sequencing batch reactor. Water Research, 2014, 67, 321-329.	11.3	62

#	Article	IF	CITATIONS
109	Quantification and kinetic characterization of soluble microbial products from municipal wastewater treatment plants. Water Research, 2016, 88, 703-710.	11.3	60
110	Evaluating simultaneous chromate and nitrate reduction during microbial denitrification processes. Water Research, 2016, 89, 1-8.	11.3	60
111	Effects of nitrate dosing on sulfidogenic and methanogenic activities in sewer sediment. Water Research, 2015, 74, 155-165.	11.3	59
112	Efficient monolithic perovskite/organic tandem solar cells and their efficiency potential. Nano Energy, 2020, 78, 105238.	16.0	59
113	Coupling glucose fermentation and homoacetogenesis for elevated acetate production: Experimental and mathematical approaches. Biotechnology and Bioengineering, 2011, 108, 345-353.	3.3	58
114	A model-based assessment of nitric oxide and nitrous oxide production in membrane-aerated autotrophic nitrogen removal biofilm systems. Journal of Membrane Science, 2013, 428, 163-171.	8.2	58
115	Modeling Microbial Products in Activated Sludge under Feastâ^ Famine Conditions. Environmental Science & Technology, 2009, 43, 2489-2497.	10.0	57
116	Bentonite-supported nano zero-valent iron composite as a green catalyst for bisphenol A degradation: Preparation, performance, and mechanism of action. Journal of Environmental Management, 2020, 260, 110105.	7.8	57
117	Synthesis of Core–Shell Magnetic Nanocomposite Fe ₃ O ₄ @ Microbial Extracellular Polymeric Substances for Simultaneous Redox Sorption and Recovery of Silver Ions as Silver Nanoparticles. ACS Sustainable Chemistry and Engineering, 2018, 6, 749-756.	6.7	56
118	Cost-effective catalysts for renewable hydrogen production via electrochemical water splitting: Recent advances. Current Opinion in Green and Sustainable Chemistry, 2021, 27, 100398.	5.9	56
119	Full-scale evaluation of aerobic/extended-idle regime inducing biological phosphorus removal and its integration with intermittent sand filter to treat domestic sewage discharged from highway rest area. Biochemical Engineering Journal, 2016, 113, 114-122.	3.6	55
120	Biodegradation of atenolol by an enriched nitrifying sludge: Products and pathways. Chemical Engineering Journal, 2017, 312, 351-359.	12.7	55
121	Surface defect-abundant one-dimensional graphitic carbon nitride nanorods boost photocatalytic nitrogen fixation. New Journal of Chemistry, 2020, 44, 20651-20658.	2.8	55
122	The entering of polyethylene terephthalate microplastics into biological wastewater treatment system affects aerobic sludge digestion differently from their direct entering into sludge treatment system. Water Research, 2021, 190, 116731.	11.3	55
123	Surface defective g-C3N4â^'Cl with unique spongy structure by polarization effect for enhanced photocatalytic removal of organic pollutants. Journal of Hazardous Materials, 2020, 398, 122897.	12.4	55
124	Recent advances in photocatalytic nitrogen fixation and beyond. Nanoscale, 2022, 14, 2990-2997.	5.6	55
125	Bi ₂ O ₃ @Carbon Nanocomposites for Solar-Driven Photocatalytic Degradation of Chlorophenols. ACS Applied Nano Materials, 2019, 2, 2308-2316.	5.0	54
126	Hydrodynamics of upflow anaerobic sludge blanket reactors. AICHE Journal, 2009, 55, 516-528.	3.6	52

#	Article	IF	CITATIONS
127	Microbial fuel cell for nutrient recovery and electricity generation from municipal wastewater under different ammonium concentrations. Bioresource Technology, 2019, 292, 121992.	9.6	52
128	The anammox coupled partial-denitrification process in an integrated granular sludge and fixed-biofilm reactor developed for mainstream wastewater treatment: Performance and community structure. Water Research, 2022, 210, 117964.	11.3	52
129	Model-based evaluation of the role of Anammox on nitric oxide and nitrous oxide productions in membrane aerated biofilm reactor. Journal of Membrane Science, 2013, 446, 332-340.	8.2	51
130	Sulfide and methane production in sewer sediments: Field survey and model evaluation. Water Research, 2016, 89, 142-150.	11.3	51
131	Performance and Mechanism of Fe ₃ O ₄ Improving Biotransformation of Waste Activated Sludge into Liquid High-Value Products. Environmental Science & Technology, 2022, 56, 3658-3668.	10.0	51
132	Evaluating the impact of operational parameters on the formation of soluble microbial products (SMP) by activated sludge. Water Research, 2013, 47, 1073-1079.	11.3	50
133	Effect of methane partial pressure on the performance of a membrane biofilm reactor coupling methane-dependent denitrification and anammox. Science of the Total Environment, 2018, 639, 278-285.	8.0	50
134	How does free ammonia-based sludge pretreatment improve methane production from anaerobic digestion of waste activated sludge. Chemosphere, 2018, 206, 491-501.	8.2	50
135	High Dissolved Oxygen Selection against <i>Nitrospira</i> Sublineage I in Full-Scale Activated Sludge. Environmental Science & Technology, 2019, 53, 8157-8166.	10.0	50
136	Zero Valent Iron Significantly Enhances Methane Production from Waste Activated Sludge by Improving Biochemical Methane Potential Rather Than Hydrolysis Rate. Scientific Reports, 2015, 5, 8263.	3.3	49
137	Full-Scale Modeling Explaining Large Spatial Variations of Nitrous Oxide Fluxes in a Step-Feed Plug-Flow Wastewater Treatment Reactor. Environmental Science & Technology, 2015, 49, 9176-9184.	10.0	49
138	Sulfide removal and sulfur production in a membrane aerated biofilm reactor: Model evaluation. Chemical Engineering Journal, 2017, 309, 454-462.	12.7	49
139	Growth kinetics of Candidatus â€~Methanoperedens nitroreducens' enriched in a laboratory reactor. Science of the Total Environment, 2019, 659, 442-450.	8.0	48
140	Mitigating nitrous oxide emissions at a full-scale wastewater treatment plant. Water Research, 2020, 185, 116196.	11.3	48
141	Recycling spent water treatment adsorbents for efficient electrocatalytic water oxidation reaction. Resources, Conservation and Recycling, 2022, 178, 106037.	10.8	48
142	Heterotrophs grown on the soluble microbial products (SMP) released by autotrophs are responsible for the nitrogen loss in nitrifying granular sludge. Biotechnology and Bioengineering, 2011, 108, 2844-2852.	3.3	47
143	A novel methodology to quantify nitrous oxide emissions from full-scale wastewater treatment systems with surface aerators. Water Research, 2014, 48, 257-268.	11.3	47
144	Autotrophic nitrogen removal in membrane-aerated biofilms: Archaeal ammonia oxidation versus bacterial ammonia oxidation. Chemical Engineering Journal, 2016, 302, 535-544.	12.7	47

#	Article	IF	CITATIONS
145	Modelling the long-term effect of wastewater compositions on maximum sulfide and methane production rates of sewer biofilm. Water Research, 2018, 129, 58-65.	11.3	47
146	Heterogeneous Electro-Fenton catalysis with HKUST-1-derived Cu@C decorated in 3D graphene network. Chemosphere, 2020, 243, 125423.	8.2	47
147	A Critical Review on Nitrous Oxide Production by Ammonia-Oxidizing Archaea. Environmental Science & Technology, 2020, 54, 9175-9190.	10.0	47
148	Rhamnolipid pretreatment enhances methane production from two-phase anaerobic digestion of waste activated sludge. Water Research, 2021, 194, 116909.	11.3	47
149	Medium chain fatty acids production from anaerobic fermentation of waste activated sludge. Journal of Cleaner Production, 2021, 279, 123482.	9.3	46
150	Kinetic analysis on the two-step processes of AOB and NOB in aerobic nitrifying granules. Applied Microbiology and Biotechnology, 2009, 83, 1159-1169.	3.6	45
151	Enhanced separation of photogenerated charge carriers and catalytic properties of ZnO-MnO2 composites by microwave and photothermal effect. Journal of Alloys and Compounds, 2019, 786, 418-427.	5.5	45
152	Freezing in the presence of nitrite pretreatment enhances hydrogen production from dark fermentation of waste activated sludge. Journal of Cleaner Production, 2020, 248, 119305.	9.3	45
153	Long-term formation of microbial products in a sequencing batch reactor. Water Research, 2010, 44, 3787-3796.	11.3	44
154	Enhancement of short-chain fatty acids production from microalgae by potassium ferrate addition: Feasibility, mechanisms and implications. Bioresource Technology, 2020, 318, 124266.	9.6	44
155	Ferrate effectively removes antibiotic resistance genes from wastewater through combined effect of microbial DNA damage and coagulation. Water Research, 2020, 185, 116273.	11.3	44
156	Perturbation of clopyralid on bio-denitrification and nitrite accumulation: Long-term performance and biological mechanism. Environmental Science and Ecotechnology, 2022, 9, 100144.	13.5	43
157	High-performance photocatalytic decomposition of PFOA by BiOX/TiO2 heterojunctions: Self-induced inner electric fields and band alignment. Journal of Hazardous Materials, 2022, 430, 128195.	12.4	43
158	Evaluation on the Nanoscale Zero Valent Iron Based Microbial Denitrification for Nitrate Removal from Groundwater. Scientific Reports, 2015, 5, 12331.	3.3	42
159	Synergistic recycling and conversion of spent Li-ion battery leachate into highly efficient oxygen evolution catalysts. Green Chemistry, 2021, 23, 6538-6547.	9.0	42
160	Fast identification of fluorescent components in three-dimensional excitation-emission matrix fluorescence spectra via deep learning. Chemical Engineering Journal, 2022, 430, 132893.	12.7	42
161	A reusable, separation-free and biodegradable calcium alginate/g-C3N4 microsphere for sustainable photocatalytic wastewater treatment. Journal of Cleaner Production, 2021, 314, 128033.	9.3	41
162	Ultralight biodegradable 3D-g-C3N4 aerogel for advanced oxidation water treatment driven by oxygen delivery channels and triphase interfaces. Journal of Cleaner Production, 2021, 288, 125091.	9.3	40

#	Article	IF	CITATIONS
163	Determination of Instinct Components of Biomass on the Generation of Persistent Free Radicals (PFRs) as Critical Redox Sites in Pyrogenic Chars for Persulfate Activation. Environmental Science & Technology, 2021, 55, 7690-7701.	10.0	40
164	Upgrading biogas produced in anaerobic digestion: Biological removal and bioconversion of CO2 in biogas. Renewable and Sustainable Energy Reviews, 2021, 150, 111448.	16.4	40
165	An approach for modeling two-step denitrification in activated sludge systems. Chemical Engineering Science, 2008, 63, 1449-1459.	3.8	39
166	Evaluation of different nitrous oxide production models with four continuous long-term wastewater treatment process data series. Bioprocess and Biosystems Engineering, 2016, 39, 493-510.	3.4	39
167	Persulfate and zero valent iron combined conditioning as a sustainable technique for enhancing dewaterability of aerobically digested sludge. Chemosphere, 2019, 232, 45-53.	8.2	39
168	Enhanced dark fermentative hydrogen production from waste activated sludge by combining potassium ferrate with alkaline pretreatment. Science of the Total Environment, 2020, 707, 136105.	8.0	39
169	A simulation-based integrated approach to optimize the biological nutrient removal process in a full-scale wastewater treatment plant. Chemical Engineering Journal, 2011, 174, 635-643.	12.7	38
170	Cometabolic biodegradation of cephalexin by enriched nitrifying sludge: Process characteristics, gene expression and product biotoxicity. Science of the Total Environment, 2019, 672, 275-282.	8.0	38
171	Rapid and strong biocidal effect of ferrate on sulfidogenic and methanogenic sewer biofilms. Water Research, 2020, 169, 115208.	11.3	38
172	Mechanisms of persulfate activation on biochar derived from two different sludges: Dominance of their intrinsic compositions. Journal of Hazardous Materials, 2021, 408, 124454.	12.4	38
173	Different Pathways of Microplastics Entering the Sludge Treatment System Distinctively Affect Anaerobic Sludge Fermentation Processes. Environmental Science & Technology, 2021, 55, 11274-11283.	10.0	38
174	Hybrid Water Electrolysis: A New Sustainable Avenue for Energy-Saving Hydrogen Production. , 2022, 1, 100002.		38
175	N2O production by ammonia oxidizing bacteria in an enriched nitrifying sludge linearly depends on inorganic carbon concentration. Water Research, 2015, 74, 58-66.	11.3	37
176	Photochemical decomposition of perfluorochemicals in contaminated water. Water Research, 2020, 186, 116311.	11.3	37
177	Estimating the kinetic parameters of activated sludge storage using weighted non-linear least-squares and accelerating genetic algorithm. Water Research, 2009, 43, 2595-2604.	11.3	36
178	A Green Synthesis of Ru Modified g-C ₃ N ₄ Nanosheets for Enhanced Photocatalytic Ammonia Synthesis. Energy Material Advances, 2021, 2021, .	11.0	36
179	Growth, maintenance and product formation of autotrophs in activated sludge: Taking the nitrite-oxidizing bacteria as an example. Water Research, 2008, 42, 4261-4270.	11.3	35
180	Evaluation on factors influencing the heterotrophic growth on the soluble microbial products of autotrophs. Biotechnology and Bioengineering, 2011, 108, 804-812.	3.3	35

#	Article	IF	CITATIONS
181	Evaluating Enhanced Sulfate Reduction and Optimized Volatile Fatty Acids (VFA) Composition in Anaerobic Reactor by Fe (III) Addition. Environmental Science & Technology, 2015, 49, 2123-2131.	10.0	35
182	Revealing the Underlying Mechanisms of How Initial pH Affects Waste Activated Sludge Solubilization and Dewaterability in Freezing and Thawing Process. ACS Sustainable Chemistry and Engineering, 2018, 6, 15822-15831.	6.7	35
183	Growth and storage processes in aerobic granules grown on soybean wastewater. Biotechnology and Bioengineering, 2008, 100, 664-672.	3.3	34
184	Achieving complete nitrogen removal by coupling nitritationâ€anammox and methaneâ€dependent denitrification: A modelâ€based study. Biotechnology and Bioengineering, 2016, 113, 1035-1045.	3.3	34
185	Removal of microplastics and nanoplastics from urban waters: Separation and degradation. Water Research, 2022, 221, 118820.	11.3	34
186	Modeling anaerobic digestion of aquatic plants by rumen cultures: Cattail as an example. Water Research, 2009, 43, 2047-2055.	11.3	33
187	Unravelling kinetic and microbial responses of enriched nitrifying sludge under long-term exposure of cephalexin and sulfadiazine. Water Research, 2020, 173, 115592.	11.3	33
188	Improving Medium-Chain Fatty Acid Production from Anaerobic Fermentation of Waste Activated Sludge Using Free Ammonia. ACS ES&T Engineering, 2021, 1, 478-489.	7.6	33
189	Biodegradation of pharmaceuticals in membrane aerated biofilm reactor for autotrophic nitrogen removal: A model-based evaluation. Journal of Membrane Science, 2015, 494, 39-47.	8.2	32
190	Mathematical Modeling of Nitrous Oxide Production during Denitrifying Phosphorus Removal Process. Environmental Science & Technology, 2015, 49, 8595-8601.	10.0	32
191	A Novel Protocol for Model Calibration in Biological Wastewater Treatment. Scientific Reports, 2015, 5, 8493.	3.3	32
192	Nitrite accumulation inside sludge flocs significantly influencing nitrous oxide production by ammonium-oxidizing bacteria. Water Research, 2018, 143, 99-108.	11.3	32
193	Nitrous oxide production in autotrophic nitrogen removal granular sludge: A modeling study. Biotechnology and Bioengineering, 2019, 116, 1280-1291.	3.3	32
194	Integrating electrodeposition with electrolysis for closed-loop resource utilization of battery industrial wastewater. Green Chemistry, 2022, 24, 3208-3217.	9.0	32
195	Simulation and optimization of a full-scale Carrousel oxidation ditch plant for municipal wastewater treatment. Biochemical Engineering Journal, 2011, 56, 9-16.	3.6	31
196	Modeling and optimization of granulation process of activated sludge in sequencing batch reactors. Biotechnology and Bioengineering, 2013, 110, 1312-1322.	3.3	31
197	Degradation of methanethiol in anaerobic sewers and its correlation with methanogenic activities. Water Research, 2015, 69, 80-89.	11.3	31
198	Combined Effect of Free Nitrous Acid Pretreatment and Sodium Dodecylbenzene Sulfonate on Short-Chain Fatty Acid Production from Waste Activated Sludge. Scientific Reports, 2016, 6, 21622.	3.3	31

#	Article	IF	CITATIONS
199	Microwave pretreatment of polyacrylamide flocculated waste activated sludge: Effect on anaerobic digestion and polyacrylamide degradation. Bioresource Technology, 2019, 290, 121776.	9.6	31
200	Substrate Diffusion within Biofilms Significantly Influencing the Electron Competition during Denitrification. Environmental Science & amp; Technology, 2019, 53, 261-269.	10.0	31
201	Integrating high-efficiency oxygen evolution catalysts featuring accelerated surface reconstruction from waste printed circuit boards via a boriding recycling strategy. Applied Catalysis B: Environmental, 2021, 298, 120583.	20.2	31
202	Nitrous oxide production in completely autotrophic nitrogen removal biofilm process: A simulation study. Chemical Engineering Journal, 2016, 287, 217-224.	12.7	30
203	Effects of ultrasonic treatment on the ammonia-oxidizing bacterial (AOB) growth kinetics. Science of the Total Environment, 2019, 690, 629-635.	8.0	30
204	Improving engineering characteristics of expansive soils using industry waste as a sustainable application for reuse of bagasse ash. Transportation Geotechnics, 2021, 31, 100637.	4.5	30
205	Effect of sodium dodecylbenzene sulfonate on hydrogen production from dark fermentation of waste activated sludge. Science of the Total Environment, 2021, 799, 149383.	8.0	30
206	Zero-valent iron mediated biological wastewater and sludge treatment. Chemical Engineering Journal, 2021, 426, 130821.	12.7	30
207	An integrated dynamic model for simulating a full-scale municipal wastewater treatment plant under fluctuating conditions. Chemical Engineering Journal, 2010, 160, 522-529.	12.7	29
208	Spectrometric characterization of the effluent dissolved organic matter from an anammox reactor shows correlation between the EEM signature and anammox growth. Chemosphere, 2014, 117, 271-277.	8.2	29
209	Polyethylene terephthalate microplastic fibers increase the release of extracellular antibiotic resistance genes during sewage sludge anaerobic digestion. Water Research, 2022, 217, 118426.	11.3	29
210	Microplastics aging in wastewater treatment plants: Focusing on physicochemical characteristics changes and corresponding environmental risks. Water Research, 2022, 221, 118780.	11.3	29
211	Mechanism and kinetics of biofilm growth process influenced by shear stress in sewers. Water Science and Technology, 2016, 73, 1572-1582.	2.5	28
212	Enhanced hydrogen accumulation from waste activated sludge by combining ultrasonic and free nitrous acid pretreatment: Performance, mechanism, and implication. Bioresource Technology, 2019, 285, 121363.	9.6	28
213	The fate and impact of TCC in nitrifying cultures. Water Research, 2020, 178, 115851.	11.3	28
214	Revealing the Mechanism of Biochar Enhancing the Production of Medium Chain Fatty Acids from Waste Activated Sludge Alkaline Fermentation Liquor. ACS ES&T Water, 2021, 1, 1014-1024.	4.6	28
215	Storage and growth of denitrifiers in aerobic granules: Part I. model development. Biotechnology and Bioengineering, 2008, 99, 314-323.	3.3	27
216	Selection of mathematical models for N2O production by ammonia oxidizing bacteria under varying dissolved oxygen and nitrite concentrations. Chemical Engineering Journal, 2015, 281, 661-668.	12.7	27

#	Article	IF	CITATIONS
217	Biotransformation of acyclovir by an enriched nitrifying culture. Chemosphere, 2017, 170, 25-32.	8.2	27
218	Polyethylenimine modified potassium tungsten oxide adsorbent for highly efficient Ag+ removal and valuable Ag0 recovery. Science of the Total Environment, 2019, 692, 1048-1056.	8.0	27
219	Insights into the toxicity of troclocarban to anaerobic digestion: Sludge characteristics and methane production. Journal of Hazardous Materials, 2020, 385, 121615.	12.4	27
220	The impact and fate of clarithromycin in anaerobic digestion of waste activated sludge for biogas production. Environmental Research, 2021, 195, 110792.	7.5	27
221	Different sizes of polystyrene microplastics induced distinct microbial responses of anaerobic granular sludge. Water Research, 2022, 220, 118607.	11.3	27
222	Highly-efficient Pb2+ removal from water by novel K2W4O13 nanowires: Performance, mechanisms and DFT calculation. Chemical Engineering Journal, 2020, 381, 122632.	12.7	26
223	Nitrous oxide production from wastewater treatment: The potential as energy resource rather than potent greenhouse gas. Journal of Hazardous Materials, 2020, 387, 121694.	12.4	26
224	Modular design of an efficient heterostructured FeS ₂ /TiO ₂ oxygen evolution electrocatalyst <i>via</i> sulfidation of natural ilmenites. Journal of Materials Chemistry A, 2021, 9, 25032-25041.	10.3	26
225	Formation and quantification of soluble microbial products and N2O production by ammonia-oxidizing bacteria (AOB)-enriched activated sludge. Chemical Engineering Science, 2012, 71, 67-74.	3.8	25
226	Optimizing sulfur-driven mixotrophic denitrification process: System performance and nitrous oxide emission. Chemical Engineering Science, 2017, 172, 414-422.	3.8	25
227	Controllable design of nanoworm-like nickel sulfides for efficient electrochemical water splitting in alkaline media. Materials Today Energy, 2020, 18, 100573.	4.7	25
228	Assessment of Heterotrophic Growth Supported by Soluble Microbial Products in Anammox Biofilm using Multidimensional Modeling. Scientific Reports, 2016, 6, 27576.	3.3	24
229	Triclosan degradation in sludge anaerobic fermentation and its impact on hydrogen production. Chemical Engineering Journal, 2021, 421, 129948.	12.7	24
230	Denitrifying Anaerobic Methane Oxidation and Anammox Process in a Membrane Aerated Membrane Bioreactor: Kinetic Evaluation and Optimization. Environmental Science & Technology, 2020, 54, 6968-6977.	10.0	23
231	Simultaneous adsorption and degradation of bisphenol A on magnetic illite clay composite: Eco-friendly preparation, characterizations, and catalytic mechanism. Journal of Cleaner Production, 2021, 287, 125068.	9.3	23
232	Understanding and regulating the impact of tetracycline to the anaerobic fermentation of waste activated sludge. Journal of Cleaner Production, 2021, 313, 127929.	9.3	23
233	Enhanced methane production from anaerobic digestion of waste activated sludge through preliminary pretreatment using calcium hypochlorite. Journal of Environmental Management, 2021, 295, 113346.	7.8	23
234	Coconut shell ash enhances short-chain fatty acids production from anaerobic algae fermentation. Bioresource Technology, 2021, 338, 125494.	9.6	23

#	Article	IF	CITATIONS
235	An Integrated First Principal and Deep Learning Approach for Modeling Nitrous Oxide Emissions from Wastewater Treatment Plants. Environmental Science & Technology, 2022, 56, 2816-2826.	10.0	23
236	Emerging electrochemical techniques for identifying and removing micro/nanoplastics in urban waters. Water Research, 2022, 221, 118846.	11.3	23
237	Simulation of heterotrophic storage and growth processes in activated sludge under aerobic conditions. Chemical Engineering Journal, 2008, 140, 101-109.	12.7	22
238	Formation of Distinct Soluble Microbial Products by Activated Sludge: Kinetic Analysis and Quantitative Determination. Environmental Science & Technology, 2012, 46, 1667-1674.	10.0	22
239	Insight into the nitrification kinetics and microbial response of an enriched nitrifying sludge in the biodegradation of sulfadiazine. Environmental Pollution, 2019, 255, 113160.	7.5	22
240	Facile preparation of hydrophilic In ₂ O ₃ nanospheres and rods with improved performances for photocatalytic degradation of PFOA. Environmental Science: Nano, 2021, 8, 1010-1018.	4.3	22
241	Improving nutrients removal and energy recovery from wastes using hydrochar. Science of the Total Environment, 2021, 783, 146980.	8.0	22
242	Unlocking the electrocatalytic activity of natural chalcopyrite using mechanochemistry. Journal of Energy Chemistry, 2022, 68, 275-283.	12.9	22
243	Modelling cometabolic biotransformation of sulfamethoxazole by an enriched ammonia oxidizing bacteria culture. Chemical Engineering Science, 2017, 173, 465-473.	3.8	21
244	Modeling of Pharmaceutical Biotransformation by Enriched Nitrifying Culture under Different Metabolic Conditions. Environmental Science & Technology, 2018, 52, 2835-2843.	10.0	21
245	Free Ammonia Pretreatment Improves Degradation of Secondary Sludge During Aerobic Digestion. ACS Sustainable Chemistry and Engineering, 2018, 6, 1105-1111.	6.7	21
246	Alkaline pre-fermentation for anaerobic digestion of polyacrylamide flocculated sludge: Simultaneously enhancing methane production and polyacrylamide degradation. Chemical Engineering Journal, 2021, 425, 131407.	12.7	21
247	Boosted selective catalytic nitrate reduction to ammonia on carbon/bismuth/bismuth oxide photocatalysts. Journal of Cleaner Production, 2022, 331, 129975.	9.3	21
248	A Novel Approach to Evaluate the Production Kinetics of Extracellular Polymeric Substances (EPS) by Activated Sludge Using Weighted Nonlinear Least-Squares Analysis. Environmental Science & Technology, 2009, 43, 3743-3750.	10.0	20
249	Evaluating the Role of Microbial Internal Storage Turnover on Nitrous Oxide Accumulation During Denitrification. Scientific Reports, 2015, 5, 15138.	3.3	20
250	Perchlorate, nitrate, and sulfate reduction in hydrogen-based membrane biofilm reactor: Model-based evaluation. Chemical Engineering Journal, 2017, 316, 82-90.	12.7	20
251	Innovative Solid-State Microelectrode for Nitrite Determination in a Nitrifying Granule. Environmental Science & Technology, 2008, 42, 4467-4471.	10.0	19
252	Microbial Internal Storage Alters the Carbon Transformation in Dynamic Anaerobic Fermentation. Environmental Science & Technology, 2015, 49, 9159-9167.	10.0	19

#	Article	IF	CITATIONS
253	Bioelectrochemical reduction of an azo dye by a Shewanella oneidensis MR-1 formed biocathode. International Biodeterioration and Biodegradation, 2016, 115, 250-256.	3.9	19
254	Anaerobic conversion of hydrogen and carbon dioxide to fatty acids production in a membrane biofilm reactor: A modeling approach. Chemical Engineering Journal, 2016, 306, 1092-1098.	12.7	19
255	Quantitative evaluation on the characteristics of activated sludge granules and flocs using a fuzzy entropy-based approach. Scientific Reports, 2017, 7, 42910.	3.3	19
256	A modeling approach to direct interspecies electron transfer process in anaerobic transformation of ethanol to methane. Environmental Science and Pollution Research, 2017, 24, 855-863.	5.3	19
257	Simultaneous sorption and reduction of Cr(VI) in aquatic system by microbial extracellular polymeric substances from <i>Klebsiella</i> sp. J1. Journal of Chemical Technology and Biotechnology, 2018, 93, 3152-3159.	3.2	19
258	Green Synthesis of Fe ₃ O ₄ @Carbon Filter Media for Simultaneous Phosphate Recovery and Nitrogen Removal from Domestic Wastewater in Biological Aerated Filters. ACS Sustainable Chemistry and Engineering, 2019, 7, 16698-16709.	6.7	19
259	High carrier separation efficiency for a defective g-C ₃ N ₄ with polarization effect and defect engineering: mechanism, properties and prospects. Catalysis Science and Technology, 2021, 11, 5432-5447.	4.1	19
260	Insights into the microbiomes for medium-chain carboxylic acids production from biowastes through chain elongation. Critical Reviews in Environmental Science and Technology, 2022, 52, 3787-3812.	12.8	19
261	Three-dimensional biofilm electrode reactors (3D-BERs) for wastewater treatment. Bioresource Technology, 2022, 344, 126274.	9.6	19
262	Model-based characterization of endogenous maintenance, cell death and predation processes of activated sludge in sequencing batch reactors. Chemical Engineering Science, 2011, 66, 747-754.	3.8	18
263	Impact of Ammonium Availability on Atenolol Biotransformation during Nitrification. ACS Sustainable Chemistry and Engineering, 2017, 5, 7137-7144.	6.7	18
264	Nitrate addition improves hydrogen production from acidic fermentation of waste activated sludge. Chemosphere, 2019, 235, 814-824.	8.2	18
265	Unravelling the impacts of perfluorooctanoic acid on anaerobic sludge digestion process. Science of the Total Environment, 2021, 796, 149057.	8.0	18
266	Transforming waste activated sludge into medium chain fatty acids in continuous two-stage anaerobic fermentation: Demonstration at different pH levels. Chemosphere, 2022, 288, 132474.	8.2	18
267	Small molecule π-conjugated electron acceptor for highly enhanced photocatalytic nitrogen reduction of BiOBr. Journal of Materials Science and Technology, 2022, 109, 276-281.	10.7	18
268	Transition metal chalcogenides as emerging electrocatalysts for urea electrolysis. Current Opinion in Electrochemistry, 2022, 31, 100888.	4.8	18
269	Calcium peroxide significantly enhances volatile solids destruction in aerobic sludge digestion through improving sludge biodegradability. Bioresource Technology, 2022, 346, 126655.	9.6	18
270	A two-stage degradation coupling photocatalysis to microalgae enhances the mineralization of enrofloxacin. Chemosphere, 2022, 293, 133523.	8.2	18

#	Article	IF	CITATIONS
271	Storage and growth of denitrifiers in aerobic granules: Part II. model calibration and verification. Biotechnology and Bioengineering, 2008, 99, 324-332.	3.3	17
272	Mathematical modeling of simultaneous carbon-nitrogen-sulfur removal from industrial wastewater. Journal of Hazardous Materials, 2017, 321, 371-381.	12.4	17
273	Model-based assessment of estrogen removal by nitrifying activated sludge. Chemosphere, 2018, 197, 430-437.	8.2	17
274	Plastic wastes derived carbon materials for green energy and sustainable environmental applications. , 2022, 1, 34-48.		17
275	The changes of microplastics' behavior in adsorption and anaerobic digestion of waste activated sludge induced by hydrothermal pretreatment. Water Research, 2022, 221, 118744.	11.3	17
276	Kinetic modeling microbial storage process in activated sludge under anoxic conditions. Chemical Engineering Science, 2008, 63, 2785-2792.	3.8	16
277	Modeling of the interaction among aerobic ammonium-oxidizing archaea/bacteria and anaerobic ammonium-oxidizing bacteria. Chemical Engineering Science, 2016, 150, 35-40.	3.8	16
278	Impact of granule size distribution on nitrous oxide production in autotrophic nitrogen removal granular reactor. Science of the Total Environment, 2019, 689, 700-708.	8.0	16
279	Defective crystal plane-oriented induced lattice polarization for the photocatalytic enhancement of ZnO. CrystEngComm, 2020, 22, 2709-2717.	2.6	16
280	Magnetic poly(aniline-co-5-sulfo-2-anisidine) as multifunctional adsorbent for highly effective co-removal of aqueous Cr(VI) and 2,4-Dichlophenol. Chemical Engineering Journal, 2020, 387, 124152.	12.7	16
281	Spatial distribution, sources and risk assessment of perfluoroalkyl substances in surface soils of a representative densely urbanized and industrialized city of China. Catena, 2021, 198, 105059.	5.0	16
282	Fertiliser recovery from source-separated urine via membrane bioreactor and heat localized solar evaporation. Water Research, 2021, 207, 117810.	11.3	16
283	Methane production from algae in anaerobic digestion: Role of corncob ash supplementation. Journal of Cleaner Production, 2021, 327, 129485.	9.3	16
284	Insight into the generation and consumption mechanism of tightly bound and loosely bound extracellular polymeric substances by mathematical modeling. Science of the Total Environment, 2022, 811, 152359.	8.0	16
285	Modeling of sulfur-driven autotrophic denitrification coupled with Anammox process. Bioresource Technology, 2022, 349, 126887.	9.6	16
286	Unravelling the spatial variation of nitrous oxide emissions from a step-feed plug-flow full scale wastewater treatment plant. Scientific Reports, 2016, 6, 20792.	3.3	15
287	Calcium peroxide eliminates grease inhibition and promotes short-chain fatty acids production during anaerobic fermentation of food waste. Bioresource Technology, 2020, 316, 123947.	9.6	15
288	Sludge Incineration Bottom Ash Enhances Anaerobic Digestion of Primary Sludge toward Highly Efficient Sludge Anaerobic Codigestion. ACS Sustainable Chemistry and Engineering, 2020, 8, 3005-3012.	6.7	15

#	Article	IF	CITATIONS
289	Minimizing membrane bioreactor environmental footprint by multiple objective optimization. Bioresource Technology, 2020, 302, 122824.	9.6	15
290	Eco-designed electrocatalysts for water splitting: A path toward carbon neutrality. International Journal of Hydrogen Energy, 2023, 48, 6288-6307.	7.1	15
291	Modeling predation processes in activated sludge. Biotechnology and Bioengineering, 2010, 105, 1021-1030.	3.3	14
292	Quantitative Simulation of the Granulation Process of Activated Sludge for Wastewater Treatment. Industrial & Engineering Chemistry Research, 2010, 49, 2864-2873.	3.7	14
293	Role of microorganism growth phase in the accumulation and characteristics of biomacromolecules (BMM) in a membrane bioreactor. RSC Advances, 2012, 2, 453-460.	3.6	14
294	Simultaneous carbon and nitrogen removals in membrane bioreactor with mesh filter: An experimental and modeling approach. Chemical Engineering Science, 2013, 95, 78-84.	3.8	14
295	Hexagonal K ₂ W ₄ O ₁₃ Nanowires for the Adsorption of Methylene Blue. ACS Applied Nano Materials, 2019, 2, 3802-3812.	5.0	14
296	Heterotrophic denitrifiers growing on soluble microbial products contribute to nitrous oxide production in anammox biofilm: Model evaluation. Journal of Environmental Management, 2019, 242, 309-314.	7.8	14
297	Impact of coexistence of sludge flocs on nitrous oxide production in a granule-based nitrification system: A model-based evaluation. Water Research, 2020, 170, 115312.	11.3	14
298	Model predicted N2O production from membrane-aerated biofilm reactor is greatly affected by biofilm property settings. Chemosphere, 2021, 281, 130861.	8.2	14
299	Revealing the mechanism of zinc oxide nanoparticles facilitating hydrogen production in alkaline anaerobic fermentation of waste activated sludge. Journal of Cleaner Production, 2021, 328, 129580.	9.3	14
300	Dual-anion etching induced in situ interfacial engineering for high-efficiency oxygen evolution. Chemical Engineering Journal, 2022, 431, 134304.	12.7	14
301	Formation of soluble microbial products by activated sludge under anoxic conditions. Applied Microbiology and Biotechnology, 2010, 87, 373-382.	3.6	13
302	Assessing chromate reduction by dissimilatory iron reducing bacteria using mathematical modeling. Chemosphere, 2015, 139, 334-339.	8.2	13
303	Data on metagenomic profiles of activated sludge from a full-scale wastewater treatment plant. Data in Brief, 2017, 15, 833-839.	1.0	13
304	A novel mechanistic model for nitrogen removal in algal-bacterial photo sequencing batch reactors. Bioresource Technology, 2018, 267, 502-509.	9.6	13
305	Linking the nitrous oxide production and mitigation with the microbial community in wastewater treatment: A review. Bioresource Technology Reports, 2019, 7, 100191.	2.7	13
306	Influences of Longitudinal Heterogeneity on Nitrous Oxide Production from Membrane-Aerated Biofilm Reactor: A Modeling Perspective. Environmental Science & Technology, 2020, 54, 10964-10973.	10.0	13

#	Article	IF	CITATIONS
307	Partial inhibition of borohydride hydrolysis using porous activated carbon as an effective method to improve the electrocatalytic activity of the DBFC anode. Sustainable Energy and Fuels, 2021, 5, 4401-4413.	4.9	13
308	Biological Reduction of Nitric Oxide for Efficient Recovery of Nitrous Oxide as an Energy Source. Environmental Science & Technology, 2021, 55, 1992-2005.	10.0	13
309	A new kinetic approach to microbial storage process. Applied Microbiology and Biotechnology, 2007, 76, 1431-1438.	3.6	12
310	Dynamic Modeling the Anaerobic Reactor Startup Process. Industrial & Engineering Chemistry Research, 2010, 49, 7193-7200.	3.7	12
311	Modeling electron competition among nitrogen oxides reduction and N ₂ O accumulation in hydrogenotrophic denitrification. Biotechnology and Bioengineering, 2018, 115, 978-988.	3.3	12
312	Model-based evaluation of selenate and nitrate reduction in hydrogen-based membrane biofilm reactor. Chemical Engineering Science, 2019, 195, 262-270.	3.8	12
313	Evaluating the roles of coexistence of sludge flocs on nitrogen removal and nitrous oxide production in a granule-based autotrophic nitrogen removal system. Science of the Total Environment, 2020, 730, 139018.	8.0	12
314	Modeling of Polyhydroxyalkanoate Synthesis from Biogas by <i>Methylocystis hirsuta</i> . ACS Sustainable Chemistry and Engineering, 2020, 8, 3906-3912.	6.7	12
315	Modeling nitrate/nitrite dependent anaerobic methane oxidation and Anammox process in a membrane granular sludge reactor. Chemical Engineering Journal, 2021, 403, 125822.	12.7	12
316	Denitrifying biofilm processes for wastewater treatment: developments and perspectives. Environmental Science: Water Research and Technology, 2021, 7, 40-67.	2.4	12
317	Enhancing methane production from algae anaerobic digestion using diatomite. Journal of Cleaner Production, 2021, 315, 128138.	9.3	12
318	Corncob ash boosts fermentative hydrogen production from waste activated sludge. Science of the Total Environment, 2022, 807, 151064.	8.0	12
319	Microbial and physicochemical responses of anaerobic hydrogen-producing granular sludge to polyethylene micro(nano)plastics. Water Research, 2022, 221, 118745.	11.3	12
320	Understanding the Microbial Internal Storage Turnover in Wastewater Treatment: Retrospect, Prospect, and Challenge. Critical Reviews in Environmental Science and Technology, 2015, 45, 591-612.	12.8	11
321	Mechanism of surface and interface engineering under diverse dimensional combinations: the construction of efficient nanostructured MXene-based photocatalysts. Catalysis Science and Technology, 2021, 11, 5028-5049.	4.1	11
322	Fe ³⁺ Promoted the Photocatalytic Defluorination of Perfluorooctanoic Acid (PFOA) over In ₂ O ₃ . ACS ES&T Water, 2021, 1, 2431-2439.	4.6	11
323	Development of a mechanistic model for biological nutrient removal activated sludge systems and application to a fullâ€scale WWTP. AICHE Journal, 2010, 56, 1626-1638.	3.6	10
324	Modelling Methane Production and Sulfate Reduction in Anaerobic Granular Sludge Reactor with Ethanol as Electron Donor. Scientific Reports, 2016, 6, 35312.	3.3	10

#	Article	IF	CITATIONS
325	Model-Based Feasibility Assessment of Membrane Biofilm Reactor to Achieve Simultaneous Ammonium, Dissolved Methane, and Sulfide Removal from Anaerobic Digestion Liquor. Scientific Reports, 2016, 6, 25114.	3.3	10
326	Optimizing light sources for selective growth of purple bacteria and efficient formation of value-added products. Journal of Cleaner Production, 2021, 280, 124493.	9.3	10
327	Integrated membrane bioreactors modelling: A review on new comprehensive modelling framework. Bioresource Technology, 2021, 329, 124828.	9.6	10
328	Aerobic sludge digestion is distinguishingly affected by the different entering pathways of zinc oxide nanoparticles. Journal of Hazardous Materials, 2021, 416, 125799.	12.4	10
329	CHAPTER 16. Denitrification Processes for Wastewater Treatment. 2-Oxoglutarate-Dependent Oxygenases, 2016, , 368-418.	0.8	10
330	Medium-chain fatty acids production from carbohydrates-rich wastewater through two-stage yeast biofilm processes without external electron donor addition: Biofilm development and pH impact. Science of the Total Environment, 2022, 828, 154428.	8.0	10
331	Responses of anaerobic hydrogen-producing granules to acute microplastics exposure during biological hydrogen production from wastewater. Water Research, 2022, 220, 118680.	11.3	10
332	Evaluating the role of biochar in mitigating the inhibition of polyethylene nanoplastics on anaerobic granular sludge. Water Research, 2022, 221, 118855.	11.3	10
333	Modeling and simulation of the sequencing batch reactor at a fullâ€scale municipal wastewater treatment plant. AICHE Journal, 2009, 55, 2186-2196.	3.6	9
334	Biological Nitrogen Removal from Domestic Wastewater. , 2011, , 329-340.		9
335	Model-based evaluation on simultaneous nitrate and arsenite removal in a membrane biofilm reactor. Chemical Engineering Science, 2016, 152, 488-496.	3.8	9
336	Modeling N2O production by ammonia oxidizing bacteria at varying inorganic carbon concentrations by coupling the catabolic and anabolic processes. Chemical Engineering Science, 2016, 144, 386-394.	3.8	9
337	Sulfurâ€driven autotrophic denitrification of nitric oxide for efficient nitrous oxide recovery. Biotechnology and Bioengineering, 2022, 119, 257-267.	3.3	9
338	Integrating mechanistic and deep learning models for accurately predicting the enrichment of polyhydroxyalkanoates accumulating bacteria in mixed microbial cultures. Bioresource Technology, 2022, 344, 126276.	9.6	9
339	Calcium peroxide pre-treatment improved the anaerobic digestion of primary sludge and its co-digestion with waste activated sludge. Science of the Total Environment, 2022, 828, 154404.	8.0	9
340	Influences of longitudinal gradients on methane-driven membrane biofilm reactor for complete nitrogen removal: A model-based investigation. Water Research, 2022, 220, 118665.	11.3	9
341	Modelling of simultaneous nitrogen and thiocyanate removal through coupling thiocyanate-based denitrification with anaerobic ammonium oxidation. Environmental Pollution, 2019, 253, 974-980.	7.5	8
342	How does synthetic musks affect methane production from the anaerobic digestion of waste activated sludge?. Science of the Total Environment, 2020, 713, 136594.	8.0	8

#	Article	IF	CITATIONS
343	Dominant Polar Surfaces of Colloidal II–VI Wurtzite Semiconductor Nanocrystals Enabled by Cation Exchange. Journal of Physical Chemistry Letters, 2020, 11, 4990-4997.	4.6	8
344	Influences of granule properties on the performance of autotrophic nitrogen removal granular reactor: A model-based evaluation. Bioresource Technology, 2022, 356, 127307.	9.6	8
345	Characterization, Modeling and Application of Aerobic Granular Sludge for Wastewater Treatment. , 2009, 113, 275-303.		7
346	Substrate consumption and excess sludge reduction of activated sludge in the presence of uncouplers: a modeling approach. Applied Microbiology and Biotechnology, 2010, 85, 2001-2008.	3.6	7
347	Modeling of Nitrous Oxide Production from Nitritation Reactors Treating Real Anaerobic Digestion Liquor. Scientific Reports, 2016, 6, 25336.	3.3	7
348	Enhancing immobilization of arsenic in groundwater: A model-based evaluation. Journal of Cleaner Production, 2017, 166, 449-457.	9.3	7
349	Kinetic assessment of simultaneous removal of arsenite, chlorate and nitrate under autotrophic and mixotrophic conditions. Science of the Total Environment, 2018, 628-629, 85-93.	8.0	7
350	A facile oxygen vacancy and bandgap control of Bi(OH)SO4·H2O for achieving enhanced photocatalytic remediation. Journal of Environmental Management, 2021, 294, 113046.	7.8	7
351	Exploring the feasibility of nitrous oxide reduction and polyhydroxyalkanoates production simultaneously by mixed microbial cultures. Bioresource Technology, 2021, 342, 126012.	9.6	7
352	Halophilic Martelella sp. AD-3 enhanced phenanthrene degradation in a bioaugmented activated sludge system through syntrophic interaction. Water Research, 2022, 218, 118432.	11.3	7
353	Nitrous Oxide Production in a Granule-based Partial Nitritation Reactor: A Model-based Evaluation. Scientific Reports, 2017, 7, 45609.	3.3	6
354	Model-based assessment of chromate reduction and nitrate effect in a methane-based membrane biofilm reactor. Water Research X, 2019, 5, 100037.	6.1	6
355	Modeling of completely autotrophic nitrogen removal process with salt and glycine betaine addition. Chemosphere, 2021, 264, 128474.	8.2	6
356	Mechanisms of CuO Nanoparticles at an Environmentally Relevant Level Enhancing Production of Hydrogen from Anaerobic Fermentation of Waste-Activated Sludge. ACS ES&T Water, 2021, 1, 1495-1502.	4.6	6
357	Modeling molecular structure and behavior of microbial extracellular polymeric substances through interacting-particle reaction dynamics. Chemical Engineering Journal Advances, 2021, 8, 100154.	5.2	6
358	Zero valent iron greatly improves sludge destruction and nitrogen removal in aerobic sludge digestion. Chemical Engineering Journal, 2022, 433, 134459.	12.7	6
359	Autotrophic denitrification of NO for effectively recovering N2O through using thiosulfate as sole electron donor. Bioresource Technology, 2022, 347, 126681.	9.6	6
360	Natural diatomite mediated continuous anaerobic sludge digestion: Performance, modelling and mechanisms. Journal of Cleaner Production, 2021, 329, 129750.	9.3	6

#	Article	IF	CITATIONS
361	Modeling and simulation of the formation and utilization of microbial products in aerobic granular sludge. AICHE Journal, 2010, 56, 546-559.	3.6	5
362	Formation, characterization and mathematical modeling of the aerobic granular sludge. Springer Theses, 2013, , .	0.1	5
363	Comparison of different two-pathway models for describing the combined effect of DO and nitrite on the nitrous oxide production by ammonia-oxidizing bacteria. Water Science and Technology, 2017, 75, 491-500.	2.5	5
364	A biofilm model for assessing perchlorate reduction in a methane-based membrane biofilm reactor. Chemical Engineering Journal, 2017, 327, 555-563.	12.7	5
365	Modelling melamine biodegradation in a membrane aerated biofilm reactor. Journal of Water Process Engineering, 2020, 38, 101626.	5.6	5
366	Insights into coconut shell incineration bottom ash mediated microbial hydrogen production from waste activated sludge. Journal of Cleaner Production, 2021, 322, 129157.	9.3	5
367	Highly Sensitive, Fast Response and Selective Glucose Detection Based on CuO/Nitrogenâ€doped Carbon Nonâ€enzymatic Sensor. Electroanalysis, 2022, 34, 1725-1734.	2.9	5
368	Migration behavior of impurities during the purification of waste graphite powders. Journal of Environmental Management, 2022, 315, 115150.	7.8	5
369	Sludge reduction and microbial community evolution of activated sludge induced by metabolic uncoupler o-chlorophenol in long-term anaerobic-oxic process. Journal of Environmental Management, 2022, 316, 115230.	7.8	5
370	Contact-Adsorption-Regeneration-Stabilization Process for the Treatment of Municipal Wastewater. Journal of Water and Environment Technology, 2009, 7, 83-90.	0.7	4
371	Evaluation on the impacts of predators on biomass components and oxygen uptake in sequencing batch reactor and continuous systems. Water Research, 2010, 44, 4616-4622.	11.3	4
372	Nitrous Oxide Production in Co- Versus Counter-Diffusion Nitrifying Biofilms. Scientific Reports, 2016, 6, 28880.	3.3	4
373	Comprehensive investigation into in-situ chemical oxidation of ferrous iron/sodium percarbonate (Fe(II)/SPC) processing dredged sediments for positive feedback of solid–liquid separation. Chemical Engineering Journal, 2021, 425, 130467.	12.7	4
374	Catalysts derived from Earth-abundant natural biomass enable efficient photocatalytic CO2 conversion for achieving a closed-loop carbon cycle. Green Chemistry, 2021, 23, 9683-9692.	9.0	4
375	A comprehensive analysis of evolution and underlying connections of water research themes in the 21st century. Science of the Total Environment, 2022, 835, 155411.	8.0	4
376	Model-based analysis on growth of activated sludge in a sequencing batch reactor. Applied Microbiology and Biotechnology, 2007, 77, 723-731.	3.6	3
377	Modeling of the Contact–Adsorption–Regeneration (CAR) activated sludge process. Bioresource Technology, 2011, 102, 2199-2205.	9.6	3
378	Modeling aerobic biotransformation of vinyl chloride by vinyl chloride-assimilating bacteria, methanotrophs and ethenotrophs. Journal of Hazardous Materials, 2017, 332, 97-103.	12.4	3

#	Article	IF	CITATIONS
379	Unveiling the distinctive role of titanium dioxide nanoparticles in aerobic sludge digestion. Science of the Total Environment, 2022, 813, 151872.	8.0	3
380	A thermodynamic analysis of the activated sludge process: Application to soybean wastewater treatment in a sequencing batch reactor. AICHE Journal, 2009, 55, 2737-2745.	3.6	2
381	Modeling effects of H2S on electron competition among nitrogen oxide reduction and N2O accumulation during denitrification. Environmental Science: Water Research and Technology, 2019, 5, 533-542.	2.4	2
382	Characterization of the granules in an ANAMMOX reactor after accelerated startup. Journal of Biotechnology, 2008, 136, S651.	3.8	1
383	Mathematical modeling of microbial extracellular electron transfer by electrically active microorganisms. Environmental Science: Water Research and Technology, 2015, 1, 747-752.	2.4	1
384	Anaerobic membrane bioreactors—An introduction. , 2020, , 1-24.		1
385	A Novel Protocol for Model Calibration in Biological Wastewater Treatment. , 2016, , 23-47.		1
386	A readily synthesized bismuth oxyiodide/attapulgite for the photodegradation of tetracycline under visible light irradiation. CrystEngComm, 0, , .	2.6	1
387	Algae-based alginate biomaterial: Production and applications. , 2022, , 37-66.		1
388	Reply to Comment on "Modeling Nitrous Oxide Production during Biological Nitrogen Removal via Nitrification and Denitrification: Extensions to the General ASM Models― Environmental Science & Technology, 2013, 47, 11910-11911.	10.0	0
389	Microbial Products Formation in Autotrophic Granular Sludge. Springer Theses, 2013, , 243-281.	0.1	0
390	Fate of the Microbial Products in Aerobic Granular Sludge. Springer Theses, 2013, , 203-241.	0.1	0
391	Start-up of the Anammox Process by Seeding Aerobic Granular Sludge. Springer Theses, 2013, , 303-334.	0.1	0
392	Storage and Growth Processes in Aerobic Granular Sludge. Springer Theses, 2013, , 95-138.	0.1	0
393	Formation Processes of Extracellular Polymeric Substances. Springer Theses, 2013, , 139-170.	0.1	0
394	Granulation in Pilot-Scale Reactor with Municipal Wastewater. Springer Theses, 2013, , 283-301.	0.1	0
395	Fractionating and Determination of the Soluble Microbial Products. Springer Theses, 2013, , 171-201.	0.1	0
396	Autotrophic and Heterotrophic Growth in Aerobic Granular Sludge. Springer Theses, 2013, , 55-75.	0.1	0

#	Article	IF	CITATIONS
397	Zero Valent Iron Significantly Enhances Methane Production from Waste Activated Sludge by Improving Biochemical Methane Potential Rather Than Hydrolysis Rate. , 2016, , 219-236.		ο
398	Response to Comment on "A Critical Review on Nitrous Oxide Production by Ammonia-Oxidizing Archaea― Environmental Science & Technology, 2021, 55, 799-800.	10.0	0
399	Sequestration of nitrous oxide for nutrient recovery and product formation. , 2022, , 155-177.		0
400	Modelling N2O production and emissions. , 2022, , 167-196.		0