
Hong-Yan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2935104/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Visible light-driven carbon-carbon reductive coupling of aromatic ketones activated by Ni-doped CdS quantum dots: An insight into the mechanism. Applied Catalysis B: Environmental, 2022, 304, 120946.	20.2	15
2	A Hybrid Assembly with Nickel Polyâ€Pyridine Polymer on CdS Quantum Dots for Photoâ€Reducing CO ₂ into Syngas with Controlled H ₂ /CO Ratios. ChemSusChem, 2022, 15, .	6.8	10
3	Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. Chemical Society Reviews, 2021, 50, 2540-2581.	38.1	249
4	O–O bond formation mechanisms during the oxygen evolution reaction over synthetic molecular catalysts. Chinese Journal of Catalysis, 2021, 42, 1253-1268.	14.0	86
5	Boosting photoanodic activity for water splitting in carbon dots aqueous solution without any traditional supporting electrolyte. Applied Catalysis B: Environmental, 2021, 296, 120378.	20.2	10
6	Tri-functional molecular relay to fabricate size-controlled CoO _x nanoparticles and WO ₃ photoanode for an efficient photoelectrochemical water oxidation. Catalysis Science and Technology, 2020, 10, 5677-5687.	4.1	10
7	Highly efficient and selective photocatalytic CO ₂ reduction based on water-soluble CdS QDs modified by the mixed ligands in one pot. Catalysis Science and Technology, 2020, 10, 2821-2829.	4.1	21
8	Amphiphilic micellar CdSe QD as microreactors to self-assemble nickel complexes for photosynthetic hydrogen evolution in water. International Journal of Hydrogen Energy, 2019, 44, 20079-20084.	7.1	1
9	Dendrobium huoshanense polysaccharide regulates hepatic glucose homeostasis and pancreatic β-cell function in type 2 diabetic mice. Carbohydrate Polymers, 2019, 211, 39-48.	10.2	73
10	Photo-electrocatalytic water oxidation based on an earth-abundant metallic semiconductor-molecule hybrid photoanode. International Journal of Hydrogen Energy, 2019, 44, 31884-31891.	7.1	7
11	Water splitting based on homogeneous copper molecular catalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 141-151.	3.9	41
12	Cobalt(II)–Salen Complexes for Photocatalytic Hydrogen Production in Noble Metal-Free Molecular Systems. Catalysis Letters, 2018, 148, 3158-3164.	2.6	18
13	Hydrogen production in a neutral aqueous solution with a water-soluble copper complex. International Journal of Hydrogen Energy, 2017, 42, 4202-4207.	7.1	22
14	Thin Copper-Based Film for Efficient Electrochemical Hydrogen Production from Neutral Aqueous Solutions. ACS Sustainable Chemistry and Engineering, 2017, 5, 7496-7501.	6.7	20
15	Ligand modification to stabilize the cobalt complexes for water oxidation. International Journal of Hydrogen Energy, 2017, 42, 29716-29724.	7.1	30
16	A Waterâ€Soluble Copper–Polypyridine Complex as a Homogeneous Catalyst for both Photoâ€Induced and Electrocatalytic O ₂ Evolution. Chemistry - A European Journal, 2016, 22, 1602-1607.	3.3	70
17	Porous Nickel–Iron Oxide as a Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. Advanced Science, 2015, 2, 1500199.	11.2	241
18	Water Splitting: Porous Nickel-Iron Oxide as a Highly Efficient Electrocatalyst for Oxygen Evolution Reaction (Adv. Sci. 10/2015). Advanced Science, 2015, 2, .	11.2	6

HONG-YAN WANG

#	ARTICLE	IF	CITATIONS
19	A Ru–Co hybrid material based on a molecular photosensitizer and a heterogeneous catalyst for light-driven water oxidation. Physical Chemistry Chemical Physics, 2014, 16, 3661.	2.8	12
20	Water Oxidation Catalyzed by a Dinuclear Cobalt–Polypyridine Complex. Angewandte Chemie - International Edition, 2014, 53, 14499-14502.	13.8	114
21	Light-driven hydrogen evolution system with glutamic-acid-modified zinc porphyrin as photosensitizer and [FeFe]-hydrogenase model as catalyst. Pure and Applied Chemistry, 2013, 85, 1405-1413.	1.9	7
22	Artificial Photosynthetic Systems Based on [FeFe]-Hydrogenase Mimics: the Road to High Efficiency for Light-Driven Hydrogen Evolution. ACS Catalysis, 2012, 2, 407-416.	11.2	175
23	Photocatalytic hydrogen production from a simple water-soluble [FeFe]-hydrogenase model system. Chemical Communications, 2012, 48, 8081.	4.1	68
24	Electron transfer and hydrogen generation from a molecular dyad: platinum(ii) alkynyl complex anchored to [FeFe] hydrogenase subsite mimic. Dalton Transactions, 2012, 41, 2420.	3.3	55
25	A triad [FeFe] hydrogenase system for light-driven hydrogen evolution. Chemical Communications, 2011, 47, 8406.	4.1	50
26	A Highly Efficient Photocatalytic System for Hydrogen Production by a Robust Hydrogenase Mimic in an Aqueous Solution. Angewandte Chemie - International Edition, 2011, 50, 3193-3197.	13.8	315
27	Photocatalytic Hydrogen Evolution from Rhenium(I) Complexes to [FeFe] Hydrogenase Mimics in Aqueous SDS Micellar Systems: A Biomimetic Pathway. Langmuir, 2010, 26, 9766-9771.	3.5	124
28	Photocatalytic Hydrogen Evolution by [FeFe] Hydrogenase Mimics in Homogeneous Solution. Chemistry - an Asian Journal, 2010, 5, 1796-1803.	3.3	72
29	Fluorophenyl-substituted Fe-only hydrogenases active site ADT models: different electrocatalytic process for proton reduction in HOAc and HBF4/Et2O. Dalton Transactions, 2009, , 2712.	3.3	51
30	Facile Synthesis and Functionality-Dependent Electrochemistry of Fe-Only Hydrogenase Mimics. Inorganic Chemistry, 2008, 47, 8101-8111.	4.0	55