Tetsu Ichitsubo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2934796/publications.pdf

Version: 2024-02-01

178 papers 4,604 citations

36 h-index 60 g-index

182 all docs

182 docs citations

182 times ranked 4084 citing authors

#	Article	IF	Citations
1	Thermal stability of MnO2 polymorphs. Journal of Solid State Chemistry, 2022, 305, 122683.	2.9	33
2	Metalloid substitution elevates simultaneously the strength and ductility of face-centered-cubic high-entropy alloys. Acta Materialia, 2022, 225, 117571.	7.9	64
3	Excellently balanced water-intercalation-type heat-storage oxide. Nature Communications, 2022, 13, 1452.	12.8	5
4	Atomistic study on simultaneous achievement of partial crystallization and rejuvenated glassy structure in thermal process of metallic glasses. Philosophical Magazine, 2022, 102, 1209-1230.	1.6	6
5	Influences of Enhanced Entropy in Layered Rocksalt Oxide Cathodes for Lithium-lon Batteries. ACS Applied Energy Materials, 2022, 5, 4369-4381.	5.1	6
6	Dendrite-free alkali metal electrodeposition from contact-ion-pair state induced by mixing alkaline earth cation. Cell Reports Physical Science, 2022, 3, 100907.	5.6	4
7	Nonthermal melting of charge density wave order via nucleation in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>VTe</mml:mi><mml:mn>2Physical Review B, 2022, 105, .</mml:mn></mml:msub></mml:math>	mr 3.2 /mm	l:msub>
8	Structure Design of Longâ€Life Spinelâ€Oxide Cathode Materials for Magnesium Rechargeable Batteries. Advanced Materials, 2021, 33, e2007539.	21.0	52
9	Novel Mg Rechargeable Battery Cathodes: Chevrel to Spinel. , 2021, , 491-499.		O
10	Electrochemically synthesized liquid-sulfur/sulfide composite materials for high-rate magnesium battery cathodes. Journal of Materials Chemistry A, 2021, 9, 16585-16593.	10.3	5
11	Fundamental Concepts of Bragg Coherent Diffraction Imaging Enabling to Reveal the 3D Displacement and Strain Field in Materials. Nihon Kessho Gakkaishi, 2021, 63, 143-150.	0.0	O
12	Relaxation Behavior and Heterogeneous Structures of Metallic Glasses. Zairyo/Journal of the Society of Materials Science, Japan, 2021, 70, 374-380.	0.2	0
13	Experimental Methods of Bragg Coherent Diffraction Imaging for the 3D Displacement and Strain Field Visualization in Materials. Nihon Kessho Gakkaishi, 2021, 63, 151-158.	0.0	0
14	Electrochemically Induced Strain Evolution in Pt–Ni Alloy Nanoparticles Observed by Bragg Coherent Diffraction Imaging. Nano Letters, 2021, 21, 5945-5951.	9.1	14
15	Accelerated Kinetics Revealing Metastable Pathways of Magnesiation-Induced Transformations in MnO ₂ Polymorphs. Chemistry of Materials, 2021, 33, 6983-6996.	6.7	32
16	Catalytic mechanism of spinel oxides for oxidative electrolyte decomposition in Mg rechargeable batteries. Journal of Materials Chemistry A, 2021, 9, 26401-26409.	10.3	21
17	Effects of solute oxygen on kinetics of diffusionless isothermal l % transformation in l 2-titanium alloys. Scripta Materialia, 2020, 188, 88-91.	5.2	7
18	Nitrogen doping-induced local structure change in a Cr ₂ Ge ₂ Te ₆ inverse resistance phase-change material. Materials Advances, 2020, 1, 2426-2432.	5.4	9

#	Article	IF	Citations
19	Nonthermal Dynamics of Dielectric Functions in a Resonantly Bonded Photoexcited Material. Advanced Functional Materials, 2020, 30, 2002821.	14.9	8
20	Spinel–rocksalt transition as a key cathode reaction toward high-energy-density magnesium rechargeable batteries. Current Opinion in Electrochemistry, 2020, 21, 93-99.	4.8	25
21	Direct observation of elastic softening immediately after femtosecond-laser excitation in a phase-change material. Physical Review B, 2020, 101, .	3.2	3
22	Circumventing huge volume strain in alloy anodes of lithium batteries. Nature Communications, 2020, 11, 1584.	12.8	130
23	Search for vacancies in concentrated solid-solution alloys with fcc crystal structure. Physical Review Materials, 2020, 4, .	2.4	5
24	Fundamental Study towards Development of Energy Storage Devices Utilizing Multivalent Cations. Materia Japan, 2020, 59, 413-421.	0.1	0
25	Evolution of microstructure and variations in mechanical properties accompanied with diffusionless isothermal <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>ω</mml:mi></mml:math> transformation in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>β</mml:mi></mml:math>	2.4	2
26	Suppressive effect of Fe cations in Mg(Mn1â^'xFex)2O4 positive electrodes on oxidative electrolyte decomposition for Mg rechargeable batteries. Journal of Power Sources, 2019, 435, 226822.	7.8	35
27	Decreasing activation energy of fast relaxation processes in a metallic glass during aging. Physical Review B, 2019, 99, .	3.2	10
28	Zinc-based spinel cathode materials for magnesium rechargeable batteries: toward the reversible spinel–rocksalt transition. Journal of Materials Chemistry A, 2019, 7, 12225-12235.	10.3	59
29	Feasible transformation of MgCo2O4 from spinel to defect rocksalt structure under electron irradiation. Scripta Materialia, 2019, 167, 26-30.	5.2	26
30	Electrochemical phase transformation accompanied with Mg extraction and insertion in a spinel MgMn ₂ O ₄ cathode material. Physical Chemistry Chemical Physics, 2019, 21, 23749-23757.	2.8	39
31	Diffusionless isothermal omega transformation in titanium alloys driven by quenched-in compositional fluctuations. Physical Review Materials, 2019, 3, .	2.4	12
32	CHAPTER 11. Mg–Li Dual-cation Batteries. RSC Energy and Environment Series, 2019, , 241-274.	0.5	1
33	Irreversible thermodynamics of ideal plastic deformation. Cogent Physics, 2018, 5, 1496613.	0.7	0
34	Distortion of Local Atomic Structures in Amorphous Ge-Sb-Te Phase Change Materials. Physical Review Letters, 2018, 120, 205502.	7.8	35
35	Solvation-Structure Modification by Concentrating Mg(TFSA) ₂ –MgCl ₂ –Triglyme Ternary Electrolyte. Journal of Physical Chemistry Letters, 2018, 9, 4732-4737.	4.6	37
36	Fast Diffusion of Multivalent Ions Facilitated by Concerted Interactions in Dualâ€lon Battery Systems. Advanced Energy Materials, 2018, 8, 1801475.	19.5	59

#	Article	IF	Citations
37	Strain-Induced Stabilization of Charged State in Li-Rich Layered Transition-Metal Oxide for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 19298-19308.	3.1	14
38	Constructing metal-anode rechargeable batteries utilizing concomitant intercalation of Li–Mg dual cations into Mo ₆ S ₈ . Journal of Materials Chemistry A, 2017, 5, 3534-3540.	10.3	30
39	Electrochemical lithium intercalation behavior of pristine and milled hexagonal boron nitride. Journal of Electroanalytical Chemistry, 2017, 799, 263-269.	3.8	6
40	Two distinct crystallization processes in supercooled liquid. Journal of Chemical Physics, 2016, 144, 194505.	3.0	7
41	Framework Structures for Mg Battery Cathodes. Materials Science Forum, 2016, 879, 2150-2152.	0.3	0
42	Initial Atomic Motion Immediately Following Femtosecond-Laser Excitation in Phase-Change Materials. Physical Review Letters, 2016, 117, 135501.	7.8	45
43	Intercalation and Pushâ€Out Process with Spinelâ€ŧoâ€Rocksalt Transition on Mg Insertion into Spinel Oxides in Magnesium Batteries. Advanced Science, 2015, 2, 1500072.	11.2	153
44	Roles of transition metals interchanging with lithium in electrode materials. Physical Chemistry Chemical Physics, 2015, 17, 14064-14070.	2.8	27
45	Toward "rocking-chair type―Mg–Li dual-salt batteries. Journal of Materials Chemistry A, 2015, 3, 10188-10194.	10.3	72
46	EQCM Analysis of Redox Behavior of CuFe Prussian Blue Analog in Mg Battery Electrolytes. Journal of the Electrochemical Society, 2015, 162, A2356-A2361.	2.9	48
47	Structural modification by adding Li cations into Mg/Cs-TFSA molten salt facilitating Mg electrodeposition. RSC Advances, 2015, 5, 3063-3069.	3.6	3
48	Electrochemical Behavior of Magnesium Alloys in Alkali Metal-TFSA Ionic Liquid for Magnesium-Battery Negative Electrode. Journal of the Electrochemical Society, 2014, 161, A943-A947.	2.9	21
49	Research Update: Retardation and acceleration of phase separation evaluated from observation of imbalance between structure and valence in LiFePO4/FePO4 electrode. APL Materials, 2014, 2, 070701.	5.1	6
50	Effects of water content on magnesium deposition from a Grignard reagent-based tetrahydrofuran electrolyte. Research on Chemical Intermediates, 2014, 40, 3-9.	2.7	24
51	A concept of dual-salt polyvalent-metal storage battery. Journal of Materials Chemistry A, 2014, 2, 1144-1149.	10.3	133
52	Surface-layer formation by reductive decomposition of LiPF6 at relatively high potentials on negative electrodes in lithium ion batteries and its suppression. Journal of Power Sources, 2014, 271, 431-436.	7.8	43
53	A new aspect of Chevrel compounds as positive electrodes for magnesium batteries. Journal of Materials Chemistry A, 2014, 2, 14858-14866.	10.3	31
54	Bulk-Nanoporous-Silicon Negative Electrode with Extremely High Cyclability for Lithium-Ion Batteries Prepared Using a Top-Down Process. Nano Letters, 2014, 14, 4505-4510.	9.1	208

#	Article	IF	CITATIONS
55	Time-Resolved Coherent Diffraction of Ultrafast Structural Dynamics in a Single Nanowire. Nano Letters, 2014, 14, 2413-2418.	9.1	20
56	Three-Dimensional Nanoelectrode by Metal Nanowire Nonwoven Clothes. Nano Letters, 2014, 14, 1932-1937.	9.1	48
57	EQCM analysis of redox behavior of Prussian blue in a lithium battery electrolyte. Journal of Materials Chemistry A, 2014, 2, 8041.	10.3	34
58	Revisit to diffraction anomalous fine structure. Journal of Synchrotron Radiation, 2014, 21, 1247-1251.	2.4	14
59	What determines the critical size for phase separation in LiFePO4 in lithium ion batteries?. Journal of Materials Chemistry A, 2013, 1, 14532.	10.3	18
60	Elastically constrained phase-separation dynamics competing with the charge process in the LiFePO4/FePO4 system. Journal of Materials Chemistry A, 2013, 1, 2567.	10.3	26
61	Electrochemical Stability of Magnesium Battery Current Collectors in a Grignard Reagent-Based Electrolyte. Journal of the Electrochemical Society, 2013, 160, C83-C88.	2.9	105
62	In Situ Observation of Tin Negative Electrode / Electrolyte Interface by X-ray Reflectivity. ECS Transactions, 2013, 50, 31-37.	0.5	4
63	Synthesis of Binary Magnesium–Transition Metal Oxides via Inverse Coprecipitation. Japanese Journal of Applied Physics, 2013, 52, 025501.	1.5	36
64	Time-resolved Bragg coherent X-ray diffraction revealing ultrafast lattice dynamics in nano-thickness crystal layer using X-ray free electron laser. Journal of the Ceramic Society of Japan, 2013, 121, 283-286.	1.1	10
65	Dynamic Relaxation of Pd42.5Ni7.5Cu30P20 Metallic Glass. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2013, 60, 228-235.	0.2	9
66	Study on Correlation between Complex Relaxation Phenomena and Elastic Heterogeneity in Metallic Glasses. Zairyo/Journal of the Society of Materials Science, Japan, 2013, 62, 167-171.	0.2	2
67	A Possible Way of Utilizing a Polyvalent Metal As a Negative Electrode of Storage Battery. ECS Meeting Abstracts, 2013, , .	0.0	0
68	Electrochemical Stability of Metal Electrodes for Reversible Magnesium Deposition/Dissolution in Tetrahydrofuran Dissolving Ethylmagnesium Chloride. ECS Electrochemistry Letters, 2012, 1, D11-D14.	1.9	29
69	Mechanical-energy influences to electrochemical phenomena in lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 2701.	6.7	51
70	Effects of oxygen content and heating rate on phase transition behavior in Bi2(V0.95Ti0.05)O5.475â°'x. Journal of Alloys and Compounds, 2011, 509, 5833-5838.	5. 5	4
71	Static heterogeneity in metallic glasses and its correlation to physical properties. Journal of Non-Crystalline Solids, 2011, 357, 494-500.	3.1	19
72	Potential positive electrodes for high-voltage magnesium-ion batteries. Journal of Materials Chemistry, 2011, 21, 11764.	6.7	138

#	Article	IF	Citations
73	Transverse excitations in liquid Ga. European Physical Journal: Special Topics, 2011, 196, 85-93.	2.6	19
74	Formation of Columnar-Shaped Structure of Fe in Fe–Cr–Sn Thin Films and Its Shape-Magnetic Anisotropy. Japanese Journal of Applied Physics, 2011, 50, 013004.	1.5	0
75	Control of c-axis orientation of L10-FePd in dual-phase-equilibrium FePd/Fe thin films. Journal of Applied Physics, 2011, 109, 033513.	2.5	10
76	Influence of Mechanical Strain on the Electrochemical Lithiation of Aluminum-Based Electrode Materials. Journal of the Electrochemical Society, 2011, 159, A14-A17.	2.9	27
77	Formation of Columnar-Shaped Structure of Fe in Fe–Cr–Sn Thin Films and Its Shape-Magnetic Anisotropy. Japanese Journal of Applied Physics, 2011, 50, 013004.	1.5	0
78	Precipitation of the ZrCu <i>B2</i> phase in Zr ₅₀ Cu _{50â€"} <i>_x</i> Al <i>_x</i> (i> (<i>x</i> = 0, 4, 6) metallic glasses by rapidly heating and cooling. Journal of Materials Research, 2010, 25, 793-800.	2.6	18
79	Phase Stability of Bi $<$ SUB $<$ ($<$ SUB $>$ 1− $<$ 1> $<$ SUB $>$ ME $<$ 1> $<$ SUB $>$ $<$ ($>$ SUB $>$ 5.5+δ $<$ SUB $>$ (ME=Li and Ag, $<$ 1> $<$ 1.7 (NE=Li and Ag, $<$ 1> $<$ 1.7 (NE=Li and Ag, $<$ 1) $<$ 1.7 (NE=Li and Ag, $<$ 1) $<$ 1.8 (NE=Li and Ag, $<$ 1) $<$ 1.9 (NE=Li and Ag, $<$	1.2	3
80	Effects of Transformation Strain Due to Lithiation/delithiation in Sn Electrode of Li-ion Batteries. Electrochemistry, 2010, 78, 460-462.	1.4	1
81	Phase classification, electrical conductivity, and thermal stability of Bi2(V0.95TM0.05)O5.5+δ(TM:) Tj ETQq1 1	0.784314	rgBT/Overloc
82	High oxide-ion conductivity of monovalent-metal-doped bismuth vanadate at intermediate temperatures. Solid State Ionics, 2010, 181, 719-723.	2.7	28
83	Elastic inhomogeneity and acoustic phonons in Pd-, Pt-, and Zr-based metallic glasses. Physical Review B, 2010, 81, .	3.2	15
84	Exchange-coupling of c-axis oriented L1–FePd and Fe in FePd/Fe thin films. Applied Physics Letters, 2010, 97, .	3.3	16
85	Inhomogeneity and glass-forming ability in the bulk metallic glass <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow> Physical Review B, 2009, 80, .</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	w> ³ tt ² ml:n	nn> ¹⁷ 2.5
86	Correlation of dynamic and quasistatic relaxations: The Cox–Merz rule for metallic glass. Applied Physics Letters, 2009, 95, .	3.3	8
87	Oxidation-State Control of Nanoparticles Synthesized via Chemical Reduction Using Potential Diagrams. Journal of the Electrochemical Society, 2009, 156, D321.	2.9	24
88	Structural inhomogeneity of metallic glass observed by ultrasonic and inelastic X-ray scattering measurements. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 521-522, 236-242.	5.6	9
89	Dynamic viscoelasticity of Zr–Al–Ni–Cu metallic glass in the glass transition region. Materials Science & Sci	5.6	3
90	Heating rate dependence of Tg and Tx in Zr-based BMGs with characteristic structures. Journal of Alloys and Compounds, 2009, 483, 8-13.	5.5	20

#	Article	IF	CITATIONS
91	Interfacial reaction of gas-atomized Sn–Zn solder containing Ni and Cu additives. Journal of Alloys and Compounds, 2009, 484, 185-189.	5.5	16
92	Transverse Acoustic Excitations in Liquid Ga. Physical Review Letters, 2009, 102, 105502.	7.8	131
93	Crystallization Behavior and Structural Stability of Zr ₅₀ Cu ₄₀ Al ₁₀ Bulk Metallic Glass. Materials Transactions, 2009, 50, 1340-1345.	1.2	20
94	Partial structure of Pd42:5Ni7:5Cu30P20bulk metallic glass. Journal of Physics: Conference Series, 2009, 144, 012055.	0.4	4
95	Crystallization of Zr50Cu40Al10 Metallic Glass by Rapid Heating Process. Zairyo/Journal of the Society of Materials Science, Japan, 2009, 58, 205-208.	0.2	3
96	Effects of volume strain due to Li–Sn compound formation on electrode potential in lithium-ion batteries. Acta Materialia, 2008, 56, 1539-1545.	7.9	70
97	Elastic instability condition of the raft structure during creep deformation in nickel-base superalloys. Acta Materialia, 2008, 56, 3786-3790.	7.9	12
98	Formation of Nickel Nanoparticles by Electroless Deposition Using NiO and Ni(OH)[sub 2] Suspensions. Journal of the Electrochemical Society, 2008, 155, D583.	2.9	15
99	Formation of Cu Nanoparticles by Electroless Deposition Using Aqueous CuO Suspension. Journal of the Flectrochemical Society. 2008, 155, D474. Mechanism of mml:math xmins:mml="http://www.w3.org/1998/Math/MathML"	2.9	34
100	display="inline">-axis orientation of <mml:mrow><mml:mi>L</mml:mi><mml:msub><mml:mn>1</mml:mn><mml:mn>0</mml:mn><td>><!--<b-->រសជាl:ms</td><td>sub4@/mml:m</td></mml:msub></mml:mrow>	> <b រសជាl:ms	sub4@/mml:m
101	display="inline"> <mml:mrow><mml:mi mathvariant="normal">Fe</mml:mi></mml:mrow>		

#	Article	IF	Citations
109	Elastic Properties of Cu-Based Bulk Metallic Glass around Glass Transition Temperature. Materials Science Forum, 2007, 539-543, 1932-1936.	0.3	1
110	Low Temperature Elastic Properties of CuZrTi Bulk Metallic Glass. Materials Transactions, 2007, 48, 1842-1845.	1.2	2
111	Local Structure around Pd Atoms in Pd _{42.5} 42.5Ni _{7.5} Cu ₃₀ P _{20<td>UB> 1.2</td><td>5</td>}	UB> 1.2	5
112	ãfãf¼ã,;ã,¹åž‹ãfãf¼ãf©ã,¹é‡'属ã®å¨è¦−的弾性率: æ−°ãŸã³å¹³å‡å´è;'似法ã∢ã,ˆã,‹å®šé‡äºˆæ,¬. Ma	atenia Japa	nı, 2007, 46
113	Structural study of Zr-based metallic glasses. Journal of Alloys and Compounds, 2007, 434-435, 119-120.	5.5	20
114	Crystallization accelerated by ultrasound in Pd-based metallic glasses. Journal of Alloys and Compounds, 2007, 434-435, 194-195.	5.5	10
115	Soft X-ray emission study of Pd–Ni–Cu–P bulk metallic glass. Journal of Electron Spectroscopy and Related Phenomena, 2007, 156-158, 426-429.	1.7	2
116	Electronic structure of Pd42.5Ni7.5Cu30P20, an excellent bulk metallic glass former: Comparison to the Pd40Ni40P20 reference glass. Acta Materialia, 2007, 55, 3413-3419.	7.9	27
117	Glass-to-liquid transition in zirconium and palladium based metallic glasses. Materials Science & Camp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 449-451, 506-510.	5.6	11
118	Extended mean-field method for predicting yield behaviors of porous materials. Mechanics of Materials, 2007, 39, 53-63.	3.2	9
119	A Pseudoternary Phase Diagram of the BaO-ZrO2-ScO1.5 System at 1600°C and Solubility of Scandia into Barium Zirconate. Journal of Phase Equilibria and Diffusion, 2007, 28, 517-522.	1.4	11
120	Evaluation of Strain Field Around SIC Particle in Poly-Crystalline Silicon., 2006,,.		0
121	æ"3⁄4å°"å…‰ã§ã, ̂ã³X線回æŠ~æ3•ã«ã, ̂ã, ¢ã, ¢ãf «ãf Ÿãf ‹ã, ¦ãfæ§ ‹é€è§£æžã®ä3⁄4 ‹. Keikinzoku/Journal of Japan Ins	t iout e of Li	ight Metals
122	Atomizing Effect on Sn-Zn Based Solder Alloy. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2006, 70, 162-165.	0.4	3
123	Low-temperature crystallization caused by ultrasound in Pd42.5 Ni7.5 Cu30 P20 and Pd40 Ni40 P20 bulk metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 442, 273-277.	5.6	6
124	Elasticity and anelasticity of metallic glass near the glass transition temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 442, 278-282.	5.6	18
125	Evaluation of the Stability of Raft Structure in Nickel Base Superalloys Throughout their Lifetime. Materials Research Society Symposia Proceedings, 2006, 980, 8.	0.1	O
126	Structural instability of metallic glasses under radio-frequency-ultrasonic perturbation and its correlation with glass-to-crystal transition of less-stable metallic glasses. Journal of Chemical Physics, 2006, 125, 154502.	3.0	50

#	Article	IF	Citations
127	Local Structure and Glass Transition in Zr-Based Binary Amorphous Alloys. Materials Transactions, 2005, 46, 2282-2286.	1.2	24
128	Incident Photon-Energy Dependence of the Electronic Density of States in Pd _{42.5} Ni _{7.5} Cu ₃₀ P ₂₀ Metallic Glass. Materials Transactions, 2005, 46, 2803-2806.	1.2	9
129	Preferential formation of anatase in laser-ablated titanium dioxide films. Acta Materialia, 2005, 53, 323-329.	7.9	62
130	Interpretation in elastic regime for rafting of Ni-base superalloy based on the external-stress-free dimensional change due to internal-stress equilibration. Acta Materialia, 2005, 53, 4497-4504.	7.9	17
131	On the preferential formation of anatase in amorphous titanium oxide film. Scripta Materialia, 2005, 53, 1019-1023.	5.2	19
132	Anomalous Crystallization Induced by Ultrasound in Pd _{42.5} Ni _{7.5} Cu ₃₀ P ₂₀ Metallic Glass. Journal of Metastable and Nanocrystalline Materials, 2005, 24-25, 547-550.	0.1	2
133	Evolution of Internal Stress Field in Ni-Base Superalloy through Creep Deformation. Materials Science Forum, 2005, 475-479, 619-622.	0.3	11
134	Glass-liquid transition in a less-stable metallic glass. Physical Review B, 2005, 72, .	3.2	53
135	In situ detection method for obtaining permeability of Fe-based amorphous alloys: ac resistance measurement for Fe84Nb7B9. Applied Physics Letters, 2005, 86, 032503.	3.3	1
136	Microstructure of Fragile Metallic Glasses Inferred from Ultrasound-Accelerated Crystallization in Pd-Based Metallic Glasses. Physical Review Letters, 2005, 95, 245501.	7.8	309
137	Anisotropic Yield Behavior of Lotus-Type Porous Iron: Measurements and Micromechanical Mean-Field Analysis. Journal of Materials Research, 2005, 20, 135-143.	2.6	33
138	Micromechanical Mean-Field Analysis for Stress-Strain Curve of Lotus-Type Porous Iron. Materials Science Forum, 2005, 486-487, 489-492.	0.3	0
139	On the stability of chemical order in small ordered-alloy particles. Philosophical Magazine, 2005, 85, 855-865.	1.6	11
140	Control of compound forming reaction at the interface between SnZn solder and Cu substrate. Journal of Alloys and Compounds, 2005, 392, 200-205.	5.5	54
141	Effects of External Magnetic Field on FePt Films during Heat Treatment. Japanese Journal of Applied Physics, 2004, 43, 273-276.	1.5	8
142	Single-crystal elastic constants of disordered and ordered FePd. Journal of Applied Physics, 2004, 96, 6220-6223.	2.5	31
143	Effective-mean-field approach for macroscopic elastic constantsof composites. Applied Physics Letters, 2004, 85, 197-199.	3.3	31
144	Ultrasound-induced crystallization around the glass transition temperature for Pd40Ni40P20 metallic glass. Acta Materialia, 2004, 52, 423-429.	7.9	61

#	Article	IF	Citations
145	Elastic properties of lotus-type porous iron: acoustic measurement and extended effective-mean-field theory. Acta Materialia, 2004, 52, 5195-5201.	7.9	67
146	Temperature dependence of elastic constants of lotus-type porous copper. Materials Letters, 2004, 58, 1819-1824.	2.6	6
147	Elastic constants of lotus-type porous magnesium: Comparison with effective-mean-field theory. Journal of Applied Physics, 2004, 96, 3696-3701.	2.5	22
148	Ultrasound-Induced Structural Anomaly of Supercooled Liquid in Some Bulk Metallic Glasses. Materials Transactions, 2004, 45, 1189-1193.	1.2	7
149	Elastic property of aged duplex stainless steel. Scripta Materialia, 2003, 48, 229-234.	5. 2	16
150	Elastic and anelastic behavior of Zr55Al10Ni5Cu30 bulk metallic glass around the glass transition temperature under ultrasonic excitation. Scripta Materialia, 2003, 49, 267-271.	5.2	46
151	Rafting mechanism for Ni-base superalloy under external stress: elastic or elastic–plastic phenomena?. Acta Materialia, 2003, 51, 4033-4044.	7.9	89
152	Elastic anisotropy of rafted Ni-base superalloy at high temperatures. Acta Materialia, 2003, 51, 4863-4869.	7.9	30
153	Elastic constants predicted from sintered porous MgB2 via micromechanics modeling. Materials Letters, 2003, 57, 3910-3913.	2.6	2
154	Elastic-stiffness coefficients of a silicon carbide fibre at elevated temperatures: Acoustic spectroscopy and micromechanics modelling. Philosophical Magazine, 2003, 83, 503-512.	1.6	16
155	Influence of the elastic strain on the band structure of ellipsoidal SiGe coherently embedded in the Si matrix. Journal of Applied Physics, 2003, 94, 916-920.	2.5	19
156	Elastic anisotropy and incohesive bond of chemical-vapor-deposition diamond film: Acoustic resonance measurements and micromechanics modeling. Journal of Applied Physics, 2003, 94, 6405-6410.	2.5	15
157	Fabrication of Isolated FePd Nanoparticles by Sputtering and Heat Treatment. Japanese Journal of Applied Physics, 2003, 42, 2858-2859.	1.5	9
158	OS06W0137 Acoustic spectroscopy for measuring anisotropic elastic constants of thin films. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2003, 2003.2, _OS06W0137OS06W0137.	0.0	0
159	OS6(5)-22(OS06W0137) Acoustic Spectroscopy for Measuring Anisotropic Elastic Constants of Thin Films. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2003, 2003, 237.	0.0	0
160	Measurement of the Anisotropic Elastic Constants of CVD Diamond Film and Micromechanics Modeling. Zairyo/Journal of the Society of Materials Science, Japan, 2003, 52, 1160-1165.	0.2	0
161	Elastic-Constant Measurement for Lotus-Type Porous Magnesium with Resonant Ultrasound Spectroscopy. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2003, 67, 417-419.	0.4	0
162	Elastic stiffness and ultrasonic attenuation of superconductorMgB2at low temperatures. Physical Review B, 2002, 66, .	3.2	20

#	Article	IF	CITATIONS
163	Anisotropic Elastic Constants of Porous Copper with Resonant Ultrasound Spectroscopy and Micromechanics. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2002, 66, 1073-1077.	0.4	O
164	Anisotropic elastic constants of lotus-type porous copper: measurements and micromechanics modeling. Acta Materialia, 2002, 50, 4105-4115.	7.9	69
165	Elastic constant measurement of Ni-base superalloy with the RUS and mode selective EMAR methods. Ultrasonics, 2002, 40, 211-215.	3.9	21
166	Elastic constants of lotus-type porous metal: measurement and micromechanics modeling. Proceedings of the 1992 Annual Meeting of JSME/MMD, 2002, 2002, 73-74.	0.0	0
167	Measurement of the elastic-stiffness tensor of SiC_f/Ti composites at elevated temperatures and nondestructive evaluation of disbonding. Proceedings of the 1992 Annual Meeting of JSME/MMD, 2002, 2002, 405-406.	0.0	0
168	Effect of external fields on ordering of FePd. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 312, 118-127.	5.6	68
169	Thermal fluctuation for the time-dependent Ginzburg-Landau simulation. Physical Review E, 2001, 63, 060101.	2.1	7
170	Formation of Mono-variant L1 _O Structure on Ordering of FePd under Magnetic Fields. Materials Transactions, JIM, 2000, 41, 917-922.	0.9	27
171	Kinetics of cubic to tetragonal transformation under external field by the time-dependent Ginzburg-Landau approach. Physical Review B, 2000, 62, 5435-5441.	3.2	53
172	Evaluation of elastic strain energy associated with the formation of hydride precipitates in LaNi5. Intermetallics, 2000, 8, 613-618.	3.9	33
173	Configurational free energy in order-disorder transitions from Monte Carlo calculations for systems under external fields. Physical Review B, 1999, 60, 9198-9201.	3.2	8
174	Effect of Applied Stress on fcc-L1 ₀ Transformation of FePd Single Crystal. Materials Transactions, JIM, 1998, 39, 24-30.	0.9	32
175	Single-crystal elastic constants of gamma-TiAl. Philosophical Magazine Letters, 1996, 73, 71-78.	1.2	106
176	Phonon Excitations in Pd ₄₀ Ni ₄₀ P ₂₀ Bulk Metallic Glass by Inelastic X-Ray Scattering. Materials Science Forum, 0, 879, 767-772.	0.3	4
177	Modelling Dilatometry Data of Isothermal ω-Phase Formation in a Strongly \hat{I}^2 -Stabilised TiV-Alloy. Materials Science Forum, 0, 1016, 1851-1856.	0.3	1
178	Construction of supramolecular polymer hydrogel electrolyte with ionic channels for flexible supercapacitors. Materials Chemistry Frontiers, 0, , .	5.9	13