Ao Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2934332/publications.pdf

Version: 2024-02-01

414414 430874 1,778 32 18 32 citations h-index g-index papers 32 32 32 916 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	High performance and long cycle life neutral zinc-iron flow batteries enabled by zinc-bromide complexation. Energy Storage Materials, 2022, 44, 433-440.	18.0	64
2	Perovskite enables high performance vanadium redox flow battery. Chemical Engineering Journal, 2022, 443, 136341.	12.7	85
3	Unlocking the solubility limit of ferrocyanide for high energy density redox flow batteries. Materials Today Energy, 2022, 28, 101061.	4.7	16
4	Synergetic Modulation on Solvation Structure and Electrode Interface Enables a Highly Reversible Zinc Anode for Zinc–Iron Flow Batteries. ACS Energy Letters, 2022, 7, 2331-2339.	17.4	58
5	Regulating flow field design on carbon felt electrode towards high power density operation of vanadium flow batteries. Chemical Engineering Journal, 2022, 450, 138170.	12.7	9
6	Oxygen-induced electrode activation and modulation essence towards enhanced anode redox chemistry for vanadium flow batteries. Energy Storage Materials, 2021, 34, 301-310.	18.0	47
7	Interfacial co-polymerization derived nitrogen-doped carbon enables high-performance carbon felt for vanadium flow batteries. Journal of Materials Chemistry A, 2021, 9, 17300-17310.	10.3	15
8	High-capacity zinc–iodine flow batteries enabled by a polymer–polyiodide complex cathode. Journal of Materials Chemistry A, 2021, 9, 16093-16098.	10.3	30
9	Tailoring manganese coordination environment for a highly reversible zinc-manganese flow battery. Journal of Power Sources, 2021, 507, 230295.	7.8	25
10	The role of water transport in the failure of silicone rubber coating for implantable electronic devices. Progress in Organic Coatings, 2021, 159, 106419.	3.9	7
11	Tuning the ferrous coordination structure enables a highly reversible Fe anode for long-life all-iron flow batteries. Journal of Materials Chemistry A, 2021, 9, 26354-26361.	10.3	26
12	Electrolyte transfer mechanism and optimization strategy for vanadium flow batteries adopting a Nafion membrane. Journal of Power Sources, 2020, 449, 227503.	7.8	30
13	Unveiling electrode compression impact on vanadium flow battery from polarization perspective via a symmetric cell configuration. Journal of Power Sources, 2020, 479, 228816.	7.8	8
14	Uncovering ionic conductivity impact towards high power vanadium flow battery design and operation. Journal of Power Sources, 2020, 480, 229141.	7.8	12
15	In-situ measurement of electrode kinetics in porous electrode for vanadium flow batteries using symmetrical cell design. Applied Energy, 2020, 272, 115093.	10.1	20
16	Unraveling the viscosity impact on volumetric transfer in redox flow batteries. Journal of Power Sources, 2020, 456, 228004.	7.8	10
17	A dopamine-based high redox potential catholyte for aqueous organic redox flow battery. Journal of Power Sources, 2020, 460, 228124.	7.8	19
18	Evaluation of the influence of clamping force in electrochemical performance and reliability of vanadium redox flow battery. Journal of Power Sources, 2019, 431, 170-181.	7.8	16

#	Article	IF	CITATIONS
19	Analysis and optimization of module layout for multi-stack vanadium flow battery module. Journal of Power Sources, 2019, 427, 154-164.	7.8	25
20	Numerical modelling and in-depth analysis of multi-stack vanadium flow battery module incorporating transport delay. Applied Energy, 2019, 247, 13-23.	10.1	34
21	Mechanical behavior and Weibull statistics based failure analysis of vanadium flow battery stacks. Journal of Power Sources, 2019, 412, 272-281.	7.8	14
22	Investigation of the use of electrolyte viscosity for online state-of-charge monitoring design in vanadium redox flow battery. Applied Energy, 2018, 211, 1050-1059.	10.1	87
23	Mechanical modelling and simulation analyses of stress distribution and material failure for vanadium redox flow battery. Journal of Energy Storage, 2018, 15, 133-144.	8.1	12
24	Membrane Permeability Rates of Vanadium Ions and Their Effects on Temperature Variation in Vanadium Redox Batteries. Energies, 2016, 9, 1058.	3.1	45
25	The Mechanism and Modelling of Shunt Current in the Vanadium Redox Flow Battery. ChemistrySelect, 2016, 1, 2249-2256.	1.5	26
26	Simulation Analysis of Regional Temperature Effects and Battery Management Schedules for a Residentialâ€Scale Vanadium Redox Flow Battery System. ChemPlusChem, 2015, 80, 368-375.	2.8	8
27	Studies on pressure losses and flow rate optimization in vanadium redox flow battery. Journal of Power Sources, 2014, 248, 154-162.	7.8	305
28	Investigation of the effect of shunt current on battery efficiency andÂstack temperature in vanadium redox flow battery. Journal of Power Sources, 2013, 242, 349-356.	7.8	111
29	Thermal modelling of battery configuration and self-discharge reactions in vanadium redox flow battery. Journal of Power Sources, 2012, 216, 489-501.	7.8	154
30	Thermal modelling and simulation of the all-vanadium redox flow battery. Journal of Power Sources, 2012, 203, 165-176.	7.8	139
31	Dynamic modelling of the effects of ion diffusion and side reactions on the capacity loss for vanadium redox flow battery. Journal of Power Sources, 2011, 196, 10737-10747.	7.8	306
32	Batch-to-Batch Iterative Learning Control of a Batch Polymerization Process Based on Online Sequential Extreme Learning Machine. Industrial & Engineering Chemistry Research, 2009, 48, 11108-11114.	3.7	15