

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2934332/publications.pdf Version: 2024-02-01

		430874	414414
32	1,778	18	32
papers	citations	h-index	g-index
32	32	32	916
all docs	docs citations	times ranked	citing authors

ΔΟ ΤΑΝΟ

#	Article	IF	CITATIONS
1	Dynamic modelling of the effects of ion diffusion and side reactions on the capacity loss for vanadium redox flow battery. Journal of Power Sources, 2011, 196, 10737-10747.	7.8	306
2	Studies on pressure losses and flow rate optimization in vanadium redox flow battery. Journal of Power Sources, 2014, 248, 154-162.	7.8	305
3	Thermal modelling of battery configuration and self-discharge reactions in vanadium redox flow battery. Journal of Power Sources, 2012, 216, 489-501.	7.8	154
4	Thermal modelling and simulation of the all-vanadium redox flow battery. Journal of Power Sources, 2012, 203, 165-176.	7.8	139
5	Investigation of the effect of shunt current on battery efficiency andÂstack temperature in vanadium redox flow battery. Journal of Power Sources, 2013, 242, 349-356.	7.8	111
6	Investigation of the use of electrolyte viscosity for online state-of-charge monitoring design in vanadium redox flow battery. Applied Energy, 2018, 211, 1050-1059.	10.1	87
7	Perovskite enables high performance vanadium redox flow battery. Chemical Engineering Journal, 2022, 443, 136341.	12.7	85
8	High performance and long cycle life neutral zinc-iron flow batteries enabled by zinc-bromide complexation. Energy Storage Materials, 2022, 44, 433-440.	18.0	64
9	Synergetic Modulation on Solvation Structure and Electrode Interface Enables a Highly Reversible Zinc Anode for Zinc–Iron Flow Batteries. ACS Energy Letters, 2022, 7, 2331-2339.	17.4	58
10	Oxygen-induced electrode activation and modulation essence towards enhanced anode redox chemistry for vanadium flow batteries. Energy Storage Materials, 2021, 34, 301-310.	18.0	47
11	Membrane Permeability Rates of Vanadium Ions and Their Effects on Temperature Variation in Vanadium Redox Batteries. Energies, 2016, 9, 1058.	3.1	45
12	Numerical modelling and in-depth analysis of multi-stack vanadium flow battery module incorporating transport delay. Applied Energy, 2019, 247, 13-23.	10.1	34
13	Electrolyte transfer mechanism and optimization strategy for vanadium flow batteries adopting a Nafion membrane. Journal of Power Sources, 2020, 449, 227503.	7.8	30
14	High-capacity zinc–iodine flow batteries enabled by a polymer–polyiodide complex cathode. Journal of Materials Chemistry A, 2021, 9, 16093-16098.	10.3	30
15	The Mechanism and Modelling of Shunt Current in the Vanadium Redox Flow Battery. ChemistrySelect, 2016, 1, 2249-2256.	1.5	26
16	Tuning the ferrous coordination structure enables a highly reversible Fe anode for long-life all-iron flow batteries. Journal of Materials Chemistry A, 2021, 9, 26354-26361.	10.3	26
17	Analysis and optimization of module layout for multi-stack vanadium flow battery module. Journal of Power Sources, 2019, 427, 154-164.	7.8	25
18	Tailoring manganese coordination environment for a highly reversible zinc-manganese flow battery. Journal of Power Sources, 2021, 507, 230295.	7.8	25

Ao Tang

#	Article	IF	CITATIONS
19	In-situ measurement of electrode kinetics in porous electrode for vanadium flow batteries using symmetrical cell design. Applied Energy, 2020, 272, 115093.	10.1	20
20	A dopamine-based high redox potential catholyte for aqueous organic redox flow battery. Journal of Power Sources, 2020, 460, 228124.	7.8	19
21	Evaluation of the influence of clamping force in electrochemical performance and reliability of vanadium redox flow battery. Journal of Power Sources, 2019, 431, 170-181.	7.8	16
22	Unlocking the solubility limit of ferrocyanide for high energy density redox flow batteries. Materials Today Energy, 2022, 28, 101061.	4.7	16
23	Batch-to-Batch Iterative Learning Control of a Batch Polymerization Process Based on Online Sequential Extreme Learning Machine. Industrial & Engineering Chemistry Research, 2009, 48, 11108-11114.	3.7	15
24	Interfacial co-polymerization derived nitrogen-doped carbon enables high-performance carbon felt for vanadium flow batteries. Journal of Materials Chemistry A, 2021, 9, 17300-17310.	10.3	15
25	Mechanical behavior and Weibull statistics based failure analysis of vanadium flow battery stacks. Journal of Power Sources, 2019, 412, 272-281.	7.8	14
26	Mechanical modelling and simulation analyses of stress distribution and material failure for vanadium redox flow battery. Journal of Energy Storage, 2018, 15, 133-144.	8.1	12
27	Uncovering ionic conductivity impact towards high power vanadium flow battery design and operation. Journal of Power Sources, 2020, 480, 229141.	7.8	12
28	Unraveling the viscosity impact on volumetric transfer in redox flow batteries. Journal of Power Sources, 2020, 456, 228004.	7.8	10
29	Regulating flow field design on carbon felt electrode towards high power density operation of vanadium flow batteries. Chemical Engineering Journal, 2022, 450, 138170.	12.7	9
30	Simulation Analysis of Regional Temperature Effects and Battery Management Schedules for a Residentialâ€6cale Vanadium Redox Flow Battery System. ChemPlusChem, 2015, 80, 368-375.	2.8	8
31	Unveiling electrode compression impact on vanadium flow battery from polarization perspective via a symmetric cell configuration. Journal of Power Sources, 2020, 479, 228816.	7.8	8
32	The role of water transport in the failure of silicone rubber coating for implantable electronic devices. Progress in Organic Coatings, 2021, 159, 106419.	3.9	7