
Iolanda Ialongo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2933735/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Ozone Monitoring Instrument: overview of 14 years in space. Atmospheric Chemistry and Physics, 2018, 18, 5699-5745.	4.9	259
2	State of the Climate in 2018. Bulletin of the American Meteorological Society, 2019, 100, Si-S306.	3.3	168
3	State of the Climate in 2017. Bulletin of the American Meteorological Society, 2018, 99, Si-S310.	3.3	160
4	Comparison of TROPOMI/Sentinel-5 Precursor NO ₂ observations with ground-based measurements in Helsinki. Atmospheric Measurement Techniques, 2020, 13, 205-218.	3.1	153
5	State of the Climate in 2015. Bulletin of the American Meteorological Society, 2016, 97, Si-S275.	3.3	142
6	Direct spaceâ€based observations of anthropogenic CO ₂ emission areas from OCOâ€2. Geophysical Research Letters, 2016, 43, 11,400.	4.0	137
7	State of the Climate in 2016. Bulletin of the American Meteorological Society, 2017, 98, Si-S280.	3.3	132
8	Satellite detection, longâ€range transport, and air quality impacts of volcanic sulfur dioxide from the 2014–2015 flood lava eruption at Bárðarbunga (Iceland). Journal of Geophysical Research D: Atmospheres, 2015, 120, 9739-9757.	3.3	98
9	State of the Climate in 2014. Bulletin of the American Meteorological Society, 2015, 96, ES1-ES32.	3.3	78
10	Comparison of total ozone and erythemal UV data from OMI with ground-based measurements at Rome station. Atmospheric Chemistry and Physics, 2008, 8, 3283-3289.	4.9	77
11	A new approach to correct for absorbing aerosols in OMI UV. Geophysical Research Letters, 2009, 36, .	4.0	71
12	Analysis of Four Years of Global XCO2 Anomalies as Seen by Orbiting Carbon Observatory-2. Remote Sensing, 2019, 11, 850.	4.0	51
13	Comparison of OMI NO ₂ observations and their seasonal and weekly cycles with ground-based measurements in Helsinki. Atmospheric Measurement Techniques, 2016, 9, 5203-5212.	3.1	46
14	Biomass burning aerosols observed in Eastern Finland during the Russian wildfires in summer 2010 – Part 2: Remote sensing. Atmospheric Environment, 2012, 47, 279-287.	4.1	41
15	Spaceâ€Based Observations for Understanding Changes in the Arcticâ€Boreal Zone. Reviews of Geophysics, 2020, 58, e2019RG000652.	23.0	39
16	Aerosol Single Scattering Albedo retrieval in the UV range: an application to OMI satellite validation. Atmospheric Chemistry and Physics, 2010, 10, 331-340.	4.9	32
17	Recordâ€Breaking Increases in Arctic Solar Ultraviolet Radiation Caused by Exceptionally Large Ozone Depletion in 2020. Geophysical Research Letters, 2020, 47, e2020GL090844.	4.0	30
18	The Arctic. Bulletin of the American Meteorological Society, 2020, 101, S239-S286.	3.3	29

IOLANDA IALONGO

#	Article	IF	CITATIONS
19	Ozone zonal asymmetry and planetary wave characterization during Antarctic spring. Atmospheric Chemistry and Physics, 2012, 12, 2603-2614.	4.9	28
20	Analyzing nitrogen oxides to carbon dioxide emission ratios from space: A case study of Matimba Power Station in South Africa. Atmospheric Environment: X, 2021, 10, 100110.	1.4	25
21	Characterization of OMI tropospheric NO ₂ over the Baltic Sea region. Atmospheric Chemistry and Physics, 2014, 14, 7795-7805.	4.9	24
22	Comparison of operational satellite SO ₂ products with ground-based observations in northern Finland during the Icelandic Holuhraun fissure eruption. Atmospheric Measurement Techniques, 2015, 8, 2279-2289.	3.1	24
23	The Arctic. Bulletin of the American Meteorological Society, 2021, 102, S263-S316.	3.3	23
24	Use of satellite erythemal UV products in analysing the global UV changes. Atmospheric Chemistry and Physics, 2011, 11, 9649-9658.	4.9	21
25	Satellite-based estimates of nitrogen oxide and methane emissions from gas flaring and oil production activities in Sakha Republic, Russia. Atmospheric Environment: X, 2021, 11, 100114.	1.4	19
26	Monitoring Greenhouse Gases from Space. Remote Sensing, 2021, 13, 2700.	4.0	17
27	The link between springtime total ozone and summer UV radiation in Northern Hemisphere extratropics. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8649-8661.	3.3	16
28	Application of satellite-based sulfur dioxide observations to support the cleantech sector: Detecting emission reduction from copper smelters. Environmental Technology and Innovation, 2018, 12, 172-179.	6.1	11
29	Satellite-derived sulfur dioxide (SO ₂) emissions from the 2014–2015 Holuhraun eruption (Iceland). Atmospheric Chemistry and Physics, 2019, 19, 4851-4862.	4.9	11
30	Improved GOMOS/Envisat ozone retrievals in the upper troposphere and the lower stratosphere. Atmospheric Measurement Techniques, 2017, 10, 231-246.	3.1	10
31	25 years of spectral UV measurements at SodankylĤAIP Conference Proceedings, 2017, , .	0.4	4
32	Analyzing Local Carbon Dioxide and Nitrogen Oxide Emissions From Space Using the Divergence Method: An Application to the Synthetic SMARTCARB Dataset. Frontiers in Remote Sensing, 0, 3, .	3.5	3
33	Surface UV radiation monitoring at two Italian Brewer stations (Rome and Ispra): a first comparison with OMI data. , 2006, , .		1