Roberta Licheri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/293367/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Consolidation/synthesis of materials by electric current activated/assisted sintering. Materials Science and Engineering Reports, 2009, 63, 127-287.	31.8	1,047
2	Novel processing route for the fabrication of bulk high-entropy metal diborides. Scripta Materialia, 2019, 158, 100-104.	5.2	157
3	Combination of SHS and SPS Techniques for fabrication of fully dense ZrB2-ZrC-SiC composites. Materials Letters, 2008, 62, 432-435.	2.6	110
4	Consolidation via spark plasma sintering of HfB2/SiC and HfB2/HfC/SiC composite powders obtained by self-propagating high-temperature synthesis. Journal of Alloys and Compounds, 2009, 478, 572-578.	5.5	77
5	Titanium diboride ceramics for solar thermal absorbers. Solar Energy Materials and Solar Cells, 2017, 169, 313-319.	6.2	69
6	High-entropy transition metal diborides by reactive and non-reactive spark plasma sintering: A comparative investigation. Journal of the European Ceramic Society, 2020, 40, 942-952.	5.7	64
7	Self-propagating combustion synthesis and plasma spraying deposition of TiC–Fe powders. Ceramics International, 2003, 29, 519-526.	4.8	54
8	Bulk monolithic zirconium and tantalum diborides by reactive and non-reactive spark plasma sintering. Journal of Alloys and Compounds, 2016, 663, 351-359.	5.5	53
9	Reactive Spark Plasma Sintering of rhenium diboride. Ceramics International, 2009, 35, 397-400.	4.8	50
10	Chemically-activated combustion synthesis of TiC–Ti composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 367, 185-197.	5.6	49
11	A review on combustion synthesis of novel materials: recent experimental and modeling results. Journal of Chemical Technology and Biotechnology, 2003, 78, 122-127.	3.2	48
12	Optical properties of dense zirconium and tantalum diborides for solar thermal absorbers. Renewable Energy, 2016, 91, 340-346.	8.9	46
13	Self-propagating high-temperature synthesis of barium titanate and subsequent densification by spark plasma sintering (SPS). Journal of the European Ceramic Society, 2007, 27, 2245-2253.	5.7	44
14	Efficient Technologies for the Fabrication of Dense TaB ₂ -Based Ultra-High-Temperature Ceramics. ACS Applied Materials & Interfaces, 2010, 2, 2206-2212.	8.0	38
15	Influence of the heating rate on the in situ synthesis and consolidation of ZrB2 by reactive Spark Plasma Sintering. Journal of the European Ceramic Society, 2015, 35, 1129-1137.	5.7	38
16	Synthesis, densification and characterization of TaB2–SiC composites. Ceramics International, 2010, 36, 937-941.	4.8	35
17	Effect of ball milling on reactive spark plasma sintering of B4C–TiB2 composites. Ceramics International, 2012, 38, 6469-6480.	4.8	35
18	Efficient Synthesis/Sintering Routes To Obtain Fully Dense Ultra-High-Temperature Ceramics (UHTCs). Industrial & Engineering Chemistry Research, 2007, 46, 9087-9096.	3.7	33

ROBERTA LICHERI

#	Article	IF	CITATIONS
19	Spark plasma synthesis and densification of TaB2 by pulsed electric current sintering. Materials Letters, 2011, 65, 3080-3082.	2.6	31
20	Energy efficiency during conventional and novel sintering processes: the case of Ti–Al2O3–TiC composites. Journal of Cleaner Production, 2009, 17, 877-882.	9.3	29
21	Synthesis, Sintering, and Oxidative Behavior of HfB ₂ –HfSi ₂ Ceramics. Industrial & Engineering Chemistry Research, 2014, 53, 9101-9108.	3.7	28
22	FeSrTiO3-based resistive oxygen sensors for application in diesel engines. Sensors and Actuators B: Chemical, 2008, 134, 647-653.	7.8	27
23	Self-propagating high-temperature reactions for the fabrication of Lunar and Martian physical assets. Acta Astronautica, 2012, 70, 69-76.	3.2	26
24	Resistive λ-sensors based on ball milled Fe-doped SrTiO3 nanopowders obtained by self-propagating high-temperature synthesis (SHS). Sensors and Actuators B: Chemical, 2007, 126, 258-265.	7.8	25
25	Fabrication and Formation Mechanism of <scp><scp>B</scp></scp> ₄ <scp><scp>C</scp>a€"<scp>TiB</scp></scp> 2Composite by Reactive Spark Plasma Sintering Using Unmilled and Mechanically Activated Reactants. Journal of the American Ceramic Society, 2012, 95, 3463-3471.)> 3.8	24
26	Optical characterization of hafnium boride and hafnium carbide-based ceramics for solar energy receivers. Solar Energy, 2018, 169, 111-119.	6.1	24
27	Ultra high temperature high-entropy borides: Effect of graphite addition on oxides removal and densification behaviour. Ceramics International, 2021, 47, 6220-6231.	4.8	22
28	Microstructure Evolution During Spark Plasma Sintering of Metastable (ZrO ₂ –3 mol%) Tj ETQq0 0 the American Ceramic Society, 2010, 93, 2864-2870.	0 rgBT /0 3.8	verlock 10 T 20
29	Spark plasma sintering of UHTC powders obtained by self-propagating high-temperature synthesis. Journal of Materials Science, 2008, 43, 6406-6413.	3.7	18
30	Influence of processing parameters on the electrical response of screen printed SrFe0.6Ti0.4O3â~'δ thick films. Ceramics International, 2010, 36, 521-527.	4.8	18
31	Spark plasma sintering of ZrB2- and HfB2-based Ultra High Temperature Ceramics prepared by SHS. International Journal of Self-Propagating High-Temperature Synthesis, 2009, 18, 15-24.	0.5	16
32	Ultra-high temperature porous graded ceramics for solar energy applications. Journal of the European Ceramic Society, 2019, 39, 72-78.	5.7	16
33	Spark plasma sintering of self-propagating high-temperature synthesized TiC0.7/TiB2 powders and detailed characterization of dense product. Ceramics International, 2009, 35, 2587-2599.	4.8	15
34	Optimization of the self-propagating high-temperature process for the fabrication in situ of Lunar construction materials. Chemical Engineering Journal, 2012, 193-194, 410-421.	12.7	15
35	Low-gravity combustion synthesis: Theoretical analysis of experimental evidences. AICHE Journal, 2006, 52, 3744-3761.	3.6	14
36	Mechanical and electric current activation of solid–solid reactions for the synthesis of fully dense advanced materials. Chemical Engineering Science, 2007, 62, 4885-4890.	3.8	12

Roberta Licheri

#	Article	IF	CITATIONS
37	Chemically and mechanically activated combustion synthesis of B4C–TiB2 composites. International Journal of Refractory Metals and Hard Materials, 2012, 35, 41-48.	3.8	11
38	Spark plasma sintering processing for the evaluation of cryomilled CoNiCrAlY alloys for high temperature applications in oxidizing environment. Chemical Engineering Journal, 2012, 200-202, 68-80.	12.7	10
39	Tantalum carbide products from chemically-activated combustion synthesis reactions. Ceramics International, 2017, 43, 12844-12850.	4.8	10
40	Processing, Mechanical and Optical Properties of Additive-Free ZrC Ceramics Prepared by Spark Plasma Sintering. Materials, 2016, 9, 489.	2.9	9
41	Processing and Characterization of Zr-, Hf- and Ta-Based Ultra High Temperature Ceramics. Advances in Science and Technology, 0, , .	0.2	6
42	Thermal behaviour of clay ceramics obtained by Spark Plasma Sintering: Is fractal geometry a new possible road to design porous structures?. Ceramics International, 2018, 44, 21710-21716.	4.8	6
43	On the controversial formation of silver diboride: Processing of Ag+2B powders by spark plasma sintering. Physica C: Superconductivity and Its Applications, 2009, 469, 1991-1995.	1.2	5
44	Combustion synthesis of TiC-metal composites and related plasma spraying deposition. International Journal of Materials and Product Technology, 2004, 20, 464.	0.2	4
45	Self-propagating combustion synthesis of intermetallic matrix composites in the ISS. Microgravity Science and Technology, 2007, 19, 85-89.	1.4	4
46	SHS in Italy: An overview. International Journal of Self-Propagating High-Temperature Synthesis, 2008, 17, 76-84.	0.5	2
47	Coupling SHS and SPS Processes. Advances in Science and Technology, 2014, 88, 111-120.	0.2	2
48	Mechanochemically activated powders as precursors for spark plasma sintering (SPS) processes. ,		1