Rakesh K Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2933660/publications.pdf

Version: 2024-02-01

840776 752698 23 411 11 20 citations h-index g-index papers 27 27 27 740 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Direct Comparison of Chol-siRNA Polyplexes and Chol-DsiRNA Polyplexes Targeting STAT3 in a Syngeneic Murine Model of TNBC. Non-coding RNA, 2022, 8, 8.	2.6	О
2	Identification of a Vitamin-D Receptor Antagonist, MeTC7, which Inhibits the Growth of Xenograft and Transgenic Tumors <i>In Vivo</i> . Journal of Medicinal Chemistry, 2022, 65, 6039-6055.	6.4	3
3	Plexin-B3 Regulates Cellular Motility, Invasiveness, and Metastasis in Pancreatic Cancer. Cancers, 2021, 13, 818.	3.7	7
4	HE4 Overexpression by Ovarian Cancer Promotes a Suppressive Tumor Immune Microenvironment and Enhanced Tumor and Macrophage PD-L1 Expression. Journal of Immunology, 2021, 206, 2478-2488.	0.8	13
5	Mechanical Counterbalance of Kinesin and Dynein Motors in a Microtubular Network Regulates Cell Mechanics, 3D Architecture, and Mechanosensing. ACS Nano, 2021, 15, 17528-17548.	14.6	9
6	Development of Potent Forchlorfenuron Analogs and Their Cytotoxic Effect in Cancer Cell Lines. Scientific Reports, 2020, 10, 3241.	3.3	12
7	The biomarker HE4 (WFDC2) promotes a pro-angiogenic and immunosuppressive tumor microenvironment via regulation of STAT3 target genes. Scientific Reports, 2020, 10, 8558.	3.3	16
8	Novel Small Molecule MEK Inhibitor URML-3881 Enhances Cisplatin Sensitivity in Clear Cell Ovarian Cancer. Translational Oncology, 2019, 12, 917-924.	3.7	7
9	Human Epididymis Secretory Protein 4 (HE4) Compromises Cytotoxic Mononuclear Cells via Inducing Dual Specificity Phosphatase 6. Frontiers in Pharmacology, 2019, 10, 216.	3.5	7
10	HE4 Promotes Events Associated with Metastatic Ovarian Cancer Via Regulation of the Extracellular Matrix. FASEB Journal, 2018, 32, 804.1.	0.5	0
11	Role of RasGRP3 in EPO/EPOR Signaling and Transmigration of Human Hematopoietic CD34+ Cells. Blood, 2018, 132, 4531-4531.	1.4	0
12	The cranberry flavonoids PAC DP-9 and quercetin aglycone induce cytotoxicity and cell cycle arrest and increase cisplatin sensitivity in ovarian cancer cells. International Journal of Oncology, 2015, 46, 1924-1934.	3.3	62
13	Tetrathiomolybdate mediates cisplatin-induced p38 signaling and EGFR degradation and enhances response to cisplatin therapy in gynecologic cancers. Scientific Reports, 2015, 5, 15911.	3.3	14
14	Antitumor Activity of 3-Indolylmethanamines 31B and PS121912. Anticancer Research, 2015, 35, 6001-7.	1.1	7
15	Development of Novel Vitamin D Receptor–Coactivator Inhibitors. ACS Medicinal Chemistry Letters, 2014, 5, 199-204.	2.8	24
16	HE4 (WFDC2) gene overexpression promotes ovarian tumor growth. Scientific Reports, 2014, 4, 3574.	3.3	79
17	Identification of VDR Antagonists among Nuclear Receptor Ligands Using Virtual Screening. Nuclear Receptor Research, 2014, 1 , .	2.5	12
18	PT19c, Another Nonhypercalcemic Vitamin D2 Derivative, Demonstrates Antitumor Efficacy in Epithelial Ovarian and Endometrial Cancer Models. Genes and Cancer, 2013, 4, 524-534.	1.9	11

#	Article	IF	CITATIONS
19	Efficacy of a Non-Hypercalcemic Vitamin-D2 Derived Anti-Cancer Agent (MT19c) and Inhibition of Fatty Acid Synthesis in an Ovarian Cancer Xenograft Model. PLoS ONE, 2012, 7, e34443.	2.5	16
20	Evaluation of the first Ergocalciferol-derived, non hypercalcemic anti-cancer agent MT19c in ovarian cancer SKOV-3 cell lines. Gynecologic Oncology, 2011, 123, 370-378.	1.4	11
21	A coumarin derivative (RKS262) inhibits cell-cycle progression, causes pro-apoptotic signaling and cytotoxicity in ovarian cancer cells. Investigational New Drugs, 2011, 29, 63-72.	2.6	49
22	A novel indole ethyl isothiocyanate (7Me-IEITC) with anti-proliferative and pro-apoptotic effects on platinum-resistant human ovarian cancer cells. Gynecologic Oncology, 2008, 109, 240-249.	1.4	19
23	Effect of indole ethyl isothiocyanates on proliferation, apoptosis, and MAPK signaling in neuroblastoma cell lines. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5846-5852.	2.2	27