List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2933497/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intradermal injection of lidocaine with a microneedle device to provide rapid local anaesthesia for peripheral intravenous cannulation: A randomised open-label placebo-controlled clinical trial. PLoS ONE, 2022, 17, e0261641.	2.5	5
2	Predicting Viable Skin Concentration: Modelling the Subpapillary Plexus. Pharmaceutical Research, 2022, 39, 783-793.	3.5	10
3	Modeling drug transport within the viable skin - a review. Expert Opinion on Drug Metabolism and Toxicology, 2021, 17, 105-119.	3.3	10
4	Relating transdermal delivery plasma pharmacokinetics with in vitro permeation test (IVPT) findings using diffusion and compartment-in-series models. Journal of Controlled Release, 2021, 334, 37-51.	9.9	7
5	Predicting viable skin concentration: Diffusional and convective drug transport. Journal of Pharmaceutical Sciences, 2021, 110, 2823-2832.	3.3	4
6	Diffusion modelling of percutaneous absorption kinetics. Predicting urinary excretion from in vitro skin permeation tests (IVPT) for an infinite dose. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 149, 30-44.	4.3	6
7	Physiologically based mathematical modelling of solute transport within the epidermis and dermis. International Journal of Pharmaceutics, 2019, 569, 118547.	5.2	10
8	Nitrogen-Doped Titanium Dioxide Thin Films Formation on the Surface of PLLA Electrospun Microfibers Scaffold by Reactive Magnetron Sputtering Method. Plasma Chemistry and Plasma Processing, 2019, 39, 503-517.	2.4	10
9	Investigation of the Size Distribution for Diffusion-Controlled Drug Release From Drug Delivery Systems of Various Geometries. Journal of Pharmaceutical Sciences, 2019, 108, 2690-2697.	3.3	21
10	Numerical Investigation of Analytical Models of Drug Flux Through Microporated Skin. Journal of Pharmaceutical Sciences, 2019, 108, 358-363.	3.3	2
11	Flexible intramedullary nails for limb lengthening: a comprehensive comparative study of three nails types. Biomedical Materials (Bristol), 2019, 14, 025005.	3.3	11
12	Using a simple equation to predict the microporation-enhanced transdermal drug flux. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 12-18.	4.3	8
13	Fabrication and properties of I -arginine-doped PCL electrospun composite scaffolds. Materials Letters, 2018, 214, 64-67.	2.6	7
14	Microneedles as the technique of drug delivery enhancement in diverse organs and tissues. Journal of Controlled Release, 2018, 270, 184-202.	9.9	161
15	Surface modification of electrospun poly-(l-lactic) acid scaffolds by reactive magnetron sputtering. Colloids and Surfaces B: Biointerfaces, 2018, 162, 43-51.	5.0	31
16	Rutting and Roughness of Flood-Affected Pavements: Literature Review and Deterioration Models. Journal of Infrastructure Systems, 2018, 24, .	1.8	12
17	Compartmental modeling of skin transport. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 130, 336-344.	4.3	25
18	Osteoinductive composite coatings for flexible intramedullary nails. Materials Science and Engineering C, 2017, 75, 207-220.	7.3	23

YURI G ANISSIMOV

#	Article	IF	CITATIONS
19	A fiber distribution model for predicting drug release rates. Journal of Controlled Release, 2017, 258, 218-225.	9.9	24
20	The use of magnetron sputtering for the deposition of thin titanium coatings on the surface of bioresorbable electrospun fibrous scaffolds for vascular tissue engineering: A pilot study. Applied Surface Science, 2017, 398, 63-72.	6.1	36
21	Plasma treatment as an efficient tool for controlled drug release from polymeric materials: A review. Journal of Controlled Release, 2017, 266, 57-74.	9.9	70
22	Aspects of Mathematical Modelling of Pressure Retarded Osmosis. Membranes, 2016, 6, 13.	3.0	13
23	Modelling drug flux through microporated skin. Journal of Controlled Release, 2016, 241, 194-199.	9.9	13
24	The investigation of the production method influence on the structure and properties of the ferroelectric nonwoven materials based on vinylidene fluoride – tetrafluoroethylene copolymer. Materials Chemistry and Physics, 2016, 182, 338-346.	4.0	45
25	Estimating Maximal In Vitro Skin Permeation Flux from Studies Using Non-sink Receptor Phase Conditions. Pharmaceutical Research, 2016, 33, 2180-2194.	3.5	18
26	Surface modification of poly-ε-caprolactone electrospun fibrous scaffolds using plasma discharge with sputter deposition of a titanium target. Materials Letters, 2016, 171, 87-90.	2.6	27
27	Temperature effect on the build-up of exponentially growing polyelectrolyte multilayers. An exponential-to-linear transition point. Physical Chemistry Chemical Physics, 2016, 18, 7866-7874.	2.8	35
28	Pathway Distribution Model for Solute Transport in Stratum Corneum. Journal of Pharmaceutical Sciences, 2015, 104, 4443-4447.	3.3	10
29	The formation of calcium phosphate coatings by pulse laser deposition on the surface of polymeric ferroelectric. Applied Surface Science, 2015, 349, 420-429.	6.1	12
30	Modification of polylactic acid surface using RF plasma discharge with sputter deposition of a hydroxyapatite target for increased biocompatibility. Applied Surface Science, 2015, 329, 32-39.	6.1	45
31	Ferroelectric polymer scaffolds based on a copolymer of tetrafluoroethylene with vinylidene fluoride: Fabrication and properties. Materials Science and Engineering C, 2014, 40, 32-41.	7.3	19
32	lontophoretic skin permeation of peptides: an investigation into the influence of molecular properties, iontophoretic conditions and formulation parameters. Drug Delivery and Translational Research, 2014, 4, 222-232.	5.8	22
33	Osmotic power with Pressure Retarded Osmosis: Theory, performance and trends – A review. Journal of Membrane Science, 2014, 453, 337-358.	8.2	274
34	Mathematical models for skin toxicology. Expert Opinion on Drug Metabolism and Toxicology, 2014, 10, 551-560.	3.3	13
35	Surface modification of poly(l-lactide) and polycaprolactone bioresorbable polymers using RF plasma discharge with sputter deposition of a hydroxyapatite target. Materials Letters, 2014, 132, 281-284.	2.6	26

Mathematical Models for Topical and Transdermal Drug Products. , 2014, , 249-298.

4

#	Article	IF	CITATIONS
37	Modelling Skin Penetration Using the Laplace Transform Technique. Skin Pharmacology and Physiology, 2013, 26, 286-294.	2.5	14
38	Modeling the human skin barrier — Towards a better understanding of dermal absorption. Advanced Drug Delivery Reviews, 2013, 65, 152-168.	13.7	204
39	Mathematical and pharmacokinetic modelling of epidermal and dermal transport processes. Advanced Drug Delivery Reviews, 2013, 65, 169-190.	13.7	116
40	Iontophoresis-Mediated Transdermal Permeation of Peptide Dendrimers across Human Epidermis. Skin Pharmacology and Physiology, 2013, 26, 127-138.	2.5	42
41	Fluorescence recovery after photo-bleaching as a method to determine local diffusion coefficient in the stratum corneum. International Journal of Pharmaceutics, 2012, 435, 93-97.	5.2	16
42	Research of the surface properties of the thermoplastic copolymer of vinilidene fluoride and tetrafluoroethylene modified with radio-frequency magnetron sputtering for medical application. Applied Surface Science, 2012, 263, 187-194.	6.1	25
43	Background free imaging of upconversion nanoparticle distribution in human skin. Journal of Biomedical Optics, 2012, 18, 061215.	2.6	42
44	Convective transport of highly plasma protein bound drugs facilitates direct penetration into deep tissues after topical application. British Journal of Clinical Pharmacology, 2012, 73, 564-578.	2.4	52
45	Introduction to Dermatokinetics. , 2011, , 1-24.		1
46	Mathematical models of skin permeability: An overview. International Journal of Pharmaceutics, 2011, 418, 115-129.	5.2	294
47	Modelling Dermal Drug Distribution After Topical Application in Human. Pharmaceutical Research, 2011, 28, 2119-2129.	3.5	48
48	Enhanced transdermal delivery of 5â€aminolevulinic acid and a dipeptide by iontophoresis. Biopolymers, 2011, 96, 166-171.	2.4	19
49	Diffusion Modelling of Percutaneous Absorption Kinetics: 4. Effects of a Slow Equilibration Process Within Stratum Corneum on Absorption and Desorption Kinetics. Journal of Pharmaceutical Sciences, 2009, 98, 772-781.	3.3	61
50	Sulphonylurea physicochemical-pharmacokinetic relationships in the pancreas and liver. Journal of Pharmaceutical Sciences, 2009, 98, 2807-2821.	3.3	7
51	Development and validation of a reversed-phase high-performance liquid chromatographic method for quantification of peptide dendrimers in human skin permeation experiments. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 3556-3562.	2.3	22
52	Alternating Current (AC) Iontophoretic Transport across Human Epidermal Membrane: Effects of AC Frequency and Amplitude. Pharmaceutical Research, 2008, 25, 616-624.	3.5	10
53	An Integrated Pharmacokinetic and Imaging Evaluation of Vehicle Effects on Solute Human Epidermal Flux and, Retention Characteristics. Pharmaceutical Research, 2008, 25, 158-166.	3.5	11
54	Periodic electric field enhanced transport through membranes. Journal of Membrane Science, 2006, 278, 290-300.	8.2	13

#	Article	IF	CITATIONS
55	Dialysis-assisted fiber optic spectroscopy for in situ biomedical sensing. Journal of Biomedical Optics, 2006, 11, 014033.	2.6	2
56	Disposition Kinetics of Propranolol Isomers in the Perfused Rat Liver. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 822-829.	2.5	12
57	Molecular Size as the Main Determinant of Solute Maximum Flux Across the Skin. Journal of Investigative Dermatology, 2004, 122, 993-999.	0.7	209
58	Diffusion Modeling of Percutaneous Absorption Kinetics: 3. Variable Diffusion and Partition Coefficients, Consequences for Stratum Corneum Depth Profiles and Desorption Kinetics. Journal of Pharmaceutical Sciences, 2004, 93, 470-487.	3.3	52
59	Factors Affecting the Formation of a Skin Reservoir for Topically Applied Solutes. Skin Pharmacology and Physiology, 2004, 17, 3-16.	2.5	79
60	Unexpected Clobetasol Propionate Profile in Human Stratum Corneum After Topical Applicationin Vitro. Pharmaceutical Research, 2003, 20, 1835-1837.	3.5	20
61	Bovine-Serum-Albumin-Containing Receptor Phase Better Predicts Transdermal Absorption Parameters for Lipophilic Compounds. Journal of Investigative Dermatology, 2003, 120, 589-591.	0.7	35
62	Determination of the Effect of Lipophilicity on the in vitro Permeability and Tissue Reservoir Characteristics of Topically Applied Solutes in Human Skin Layers. Journal of Investigative Dermatology, 2003, 120, 759-764.	0.7	87
63	Fatty acid binding protein is a major determinant of hepatic pharmacokinetics of palmitate and its metabolites. American Journal of Physiology - Renal Physiology, 2003, 284, G423-G433.	3.4	16
64	Catheter Effects in Organ Perfusion Experiments. Journal of Theoretical Biology, 2002, 214, 263-273.	1.7	2
65	A compartmental model of hepatic disposition kinetics: 1. Model development and application to linear kinetics. Journal of Pharmacokinetics and Pharmacodynamics, 2002, 29, 131-156.	1.8	22
66	Microdialysis and response during regional chemotherapy by isolated limb infusion of melphalan for limb malignancies. British Journal of Cancer, 2001, 85, 157-165.	6.4	39
67	Mathematical models in percutaneous absorption. Cutaneous and Ocular Toxicology, 2001, 20, 221-270.	0.3	13
68	Pharmacokinetics and pharmacodynamics of melphalan in isolated limb infusion for recurrent localized limb malignancy. Melanoma Research, 2001, 11, 423-431.	1.2	29
69	Diffusion modeling of percutaneous absorption kinetics: 2. Finite vehicle volume and solvent deposited solids. Journal of Pharmaceutical Sciences, 2001, 90, 504-520.	3.3	69
70	Commentary: Using the Convection–Dispersion Model and Transit Time Density Functions in the Analysis of Organ Distribution Kinetics. Journal of Pharmaceutical Sciences, 2000, 89, 1579-1586.	3.3	20
71	Diffusion modeling of percutaneous absorption kinetics. 1. Effects of flow rate, receptor sampling rate, and viable epidermal resistance for a constant donor concentration. Journal of Pharmaceutical Sciences, 1999, 88, 1201-1209.	3.3	63
72	Lateral iontophoretic solute transport in skin. Pharmaceutical Research, 1999, 16, 46-54.	3.5	5

#	Article	IF	CITATIONS
73	Modeling of hepatic elimination and organ distribution kinetics with the extended convection-dispersion model. Journal of Pharmacokinetics and Pharmacodynamics, 1999, 27, 343-382.	0.6	24
74	Interconnected-Tubes Model of Hepatic Elimination: Steady-state Considerations. Journal of Theoretical Biology, 1999, 199, 435-447.	1.7	6
75	Epidermal iontophoresis: I. Development of the ionic mobility-pore model. Pharmaceutical Research, 1998, 15, 1569-1578.	3.5	23
76	Hepatic Disposition and Metabolite Kinetics of a Homologous Series of Diflunisal Esters. Journal of Pharmaceutical Sciences, 1998, 87, 943-951.	3.3	12
77	Hepatic structure-pharmacokinetic relationships: The hepatic disposition and metabolite kinetics of a homologous series of O-acyl derivatives of salicylic acid. British Journal of Pharmacology, 1998, 124, 1475-1483.	5.4	15
78	Metabolite mean transit times in the liver as predicted by various models of hepatic elimination. Journal of Pharmacokinetics and Pharmacodynamics, 1997, 25, 477-505.	0.6	5
79	Interconnected-tubes Model of Hepatic Elimination. Journal of Theoretical Biology, 1997, 188, 89-101.	1.7	20