Mingming Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2933075/publications.pdf

Version: 2024-02-01

304743 149698 3,871 57 22 56 h-index citations g-index papers 58 58 58 6049 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	LiPAA with Shortâ€chain Anion Facilitating Li ₂ S <i>_x</i> (<i>x</i> ê€‰â‰æ€‰4) Reduin Leanâ€electrolyte Lithium–sulfur Battery. Energy and Environmental Materials, 2022, 5, 877-882.	ction 12.8	4
2	Manganese–nickel bimetallic oxide electrocatalyzing redox reactions of lithium polysulfides in lithium–sulfur batteries. Sustainable Energy and Fuels, 2022, 6, 1426-1435.	4.9	3
3	Bridging Li ₇ La ₃ Zr ₂ O ₁₂ Nanofibers with Poly(ethylene) Tj ETC Batteries. ACS Applied Materials & Date (Sub) (14, 5346-5354).	0q1 1 0.78 8.0	4314 rgB <mark>T</mark> / 23
4	CoB and BN composites enabling integrated adsorption/catalysis to polysulfides for inhibiting shuttle-effect in Li-S batteries. Journal of Energy Chemistry, 2021, 59, 220-228.	12.9	28
5	Hydrogen Spillover Facilitating Reduction of Surface Oxygen Species on Porous Carbon. ChemistrySelect, 2021, 6, 2178-2183.	1.5	2
6	sâ€MoO 3 /MoO 2 @C Hollow Tubes as Polysulfideâ€Filter for Lithiumâ€Sulfur Batteries. ChemistrySelect, 2021, 6, 3969-3975.	1.5	1
7	Co-contribution of quenching and nanocrystallization on ionic-conductivity improvement of a composite electrolyte of polyethylene Oxide/Li7La3Zr2O12 nanofibers at 45°C for all-solid-state Li metal batteries. Journal of Power Sources, 2021, 496, 229843.	7.8	18
8	Facile Synthesis of N,Pâ€codoped Hard Carbon Nanoporous Microspheres from Lignin for Highâ€Performance Anodes of Sodium″on Batteries. ChemElectroChem, 2021, 8, 3544-3552.	3.4	11
9	Zn Ion-Doped Amorphous NiWO4 Nanospheres as Cathode Material for High-Performance Asymmetric Supercapacitors. Journal of Electronic Materials, 2021, 50, 7240-7249.	2.2	9
10	Uniform growth of Li2S promoted by an organophosphorus-based mediator for high rate Li-S batteries. Chemical Engineering Journal, 2020, 381, 122685.	12.7	22
11	Optimizing the Crystallite Structure of Ligninâ€Based Nanospheres by Resinification for Highâ€Performance Sodiumâ€Ion Battery Anodes. Energy Technology, 2020, 8, 1900694.	3.8	9
12	Rational valence modulation of bimetallic carbide assisted by defect engineering to enhance polysulfide conversion for lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 18032-18042.	10.3	35
13	An "in situ templating―strategy towards mesoporous carbon for high-rate supercapacitor and high-adsorption capacity on dye macromolecules. Carbon, 2020, 164, 19-27.	10.3	24
14	Sodium metal-assisted carbonization of pyrrole to prepare N-doped porous carbons for high-rate performance supercapacitors. Carbon, 2019, 153, 265-273.	10.3	31
15	Potassium-assisted carbonization of pyrrole to prepare nanorod-structured graphitic carbon with a high surface area for high-rate supercapacitors. Carbon, 2019, 155, 326-333.	10.3	12
16	Porous carbon nanospheres with moderately oriented domains for EDLC electrode. Journal of the Chinese Chemical Society, 2019, 66, 1499-1506.	1.4	3
17	Catalytic Synthesis of Hard/Soft Carbon Hybrids with Heteroatom Doping for Enhanced Sodium Storage. ChemistrySelect, 2019, 4, 3551-3558.	1.5	9
18	Hollow Co3O4 Nanosphere Surrounded by N-Doped Graphitic Carbon Filled within Multilayer-Sandwiched Graphene Network: A High-Performance Anode for Lithium Storage. Inorganic Chemistry, 2019, 58, 3416-3424.	4.0	21

#	Article	IF	Citations
19	Abundant Defects-Induced Interfaces Enabling Effective Anchoring for Polysulfides and Enhanced Kinetics in Lean Electrolyte Lithium–Sulfur Batteries. ACS Applied Materials & Defention 11, 46767-46775.	8.0	25
20	Ureaâ€assisted Strategy Controlling The Pore Structure And Chemical Composition Of The Porous Carbon For Highâ€performance Supercapacitors. ChemistrySelect, 2019, 4, 13012-13020.	1.5	1
21	Core-shell Fe2N@amorphous carbon nanocomposite-filled 3D graphene framework: An additive-free anode material for lithium-ion batteries. Chemical Engineering Journal, 2019, 360, 1063-1070.	12.7	36
22	2D porous carbon nanosheets constructed using few-layer graphene sheets by a "medium-up―strategy for ultrahigh power-output EDLCs. Journal of Materials Chemistry A, 2018, 6, 10331-10339.	10.3	35
23	N-Doped Dual Carbon-Confined 3D Architecture rGO/Fe ₃ O ₄ /AC Nanocomposite for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2018, 10, 13470-13478.	8.0	71
24	Humic acidâ€derived hierarchical porous carbon preparation using vacuum freezeâ€drying for electric double layer capacitors. Journal of the Chinese Chemical Society, 2018, 65, 835-840.	1.4	5
25	Frame-filling C/C composite for high-performance EDLCs with high withstanding voltage. Carbon, 2018, 131, 184-192.	10.3	29
26	Commercial activated carbon as a novel precursor of the amorphous carbon for high-performance sodium-ion batteries anode. Carbon, 2018, 129, 85-94.	10.3	84
27	An Attempt to Improve Electrochemical Performances of Ligninâ€Based Hard Carbon Microspheres Anodes in Sodiumâ€lon Batteries by Using Hexamethylenetetramine. ChemistrySelect, 2018, 3, 9518-9525.	1.5	11
28	A biomass-derived nitrogen-doped porous carbon for high-energy supercapacitor. Carbon, 2018, 140, 404-412.	10.3	102
29	Pitch-based porous aerogel composed of carbon onion nanospheres for electric double layer capacitors. Carbon, 2018, 137, 304-312.	10.3	31
30	Design and Preparation of Ligninâ€Based Hierarchical Porous Carbon Microspheres by High Efficient Activation for Electric Double Layer Capacitors. ChemElectroChem, 2018, 5, 2142-2149.	3.4	21
31	SiO ₂ /Carbon Composite Microspheres with Hollow Core–Shell Structure as a Highâ€Stability Electrode for Lithiumâ€Ion Batteries. ChemElectroChem, 2017, 4, 542-549.	3.4	63
32	Highly Conductive Hierarchical C/C Composites to Eliminate Conductive Agent in EDLC Electrodes. ChemElectroChem, 2017, 4, 2793-2800.	3.4	12
33	Porous MnCo2O4-TiO2 microspheres with a yolk-shell structure for lithium-ion battery applications. Journal of Alloys and Compounds, 2017, 726, 445-452.	5. 5	11
34	Highly Conductive Hierarchical C/C Composites to Eliminate Conductive Agent in EDLC Electrodes. ChemElectroChem, 2017, 4, 2726-2726.	3.4	2
35	Frame-filling structural nanoporous carbon from amphiphilic carbonaceous mixture comprising graphite oxide. Carbon, 2016, 108, 225-233.	10.3	18
36	MgO-templated mesoporous carbons using a pitch-based thermosetting carbon precursor. RSC Advances, 2016, 6, 100546-100553.	3.6	5

#	Article	IF	CITATIONS
37	Nanoporous carbons from oxidized green needle coke for use in high performance supercapacitors. New Carbon Materials, 2015, 30, 141-149.	6.1	19
38	Fabrication of conductive carbonaceous spherical architecture from pitch by spray drying. Chemical Engineering Science, 2015, 135, 109-116.	3.8	20
39	MnO2/C composite electrodes free of conductive enhancer for supercapacitors. Journal of Alloys and Compounds, 2015, 653, 539-545.	5.5	25
40	Amphiphilic carbonaceous material-based hierarchical porous carbon aerogels for supercapacitors. Journal of Solid State Electrochemistry, 2015, 19, 619-627.	2.5	9
41	Humic acids-based hierarchical porous carbons as high-rate performance electrodes for symmetric supercapacitors. Bioresource Technology, 2014, 163, 386-389.	9.6	64
42	Anatase-TiO2 nanocoating of Li4Ti5O12 nanorod anode for lithium-ion batteries. Journal of Alloys and Compounds, 2014, 601, 38-42.	5.5	30
43	Double-shelled MnO 2 hollow spheres for supercapacitors. Materials Letters, 2014, 136, 78-80.	2.6	13
44	Hierarchical porous carbon derived from sulfonated pitch for electrical double layer capacitors. Journal of Power Sources, 2014, 252, 235-243.	7.8	147
45	Amphiphilic carbonaceous material-intervened solvothermal synthesis of LiFePO4. Journal of Power Sources, 2014, 263, 268-275.	7.8	20
46	A method to observe the structure of the interface between mesocarbon microbeads and pitch. Journal of Colloid and Interface Science, 2014, 426, 206-208.	9.4	9
47	Preparation of mesoporous MgO-templated carbons from phenolic resin and their applications for electric double-layer capacitors. Science Bulletin, 2013, 58, 992-997.	1.7	10
48	Characterization and electrochemical performance of activated carbon spheres prepared from potato starch by CO2 activation. Journal of Porous Materials, 2013, 20, 15-20.	2.6	13
49	Nanoporous carbon synthesised with coal tar pitch and its capacitive performance. Journal of Materials Chemistry A, 2013 , 1 , 9498 .	10.3	64
50	Electrochemical study of lithiated transition metal oxide composite as symmetrical electrode for low temperature ceramic fuel cells. International Journal of Hydrogen Energy, 2013, 38, 11398-11405.	7.1	80
51	Preparation of mesoporous carbons from amphiphilic carbonaceous material for high-performance electric double-layer capacitors. Journal of Power Sources, 2011, 196, 550-558.	7.8	95
52	Effects of carbonization temperature on microstructure and electrochemical performances of phenolic resin-based carbon spheres. Journal of Physics and Chemistry of Solids, 2010, 71, 214-218.	4.0	27
53	Mesoporous activated carbon from amphiphilic carbonaceous material and its application in EDLC. , 2010, , .		0
54	Studies on the performances of silica aerogel electrodes for the application of supercapacitor. lonics, 2009, 15, 561-565.	2.4	18

MINGMING CHEN

#	Article	IF	CITATIONS
55	Supercapacitor Devices Based on Graphene Materials. Journal of Physical Chemistry C, 2009, 113, 13103-13107.	3.1	2,295
56	Structure and surface elemental state analysis of polyimide resin film after carbonization and graphitization. Journal of Applied Polymer Science, 2008, 108, 1852-1856.	2.6	32
57	Solidâ^Liquid Equilibria of Several Systems Containing Acetic Acid. Journal of Chemical & Samp; Engineering Data, 2004, 49, 756-759.	1.9	54