
Mingming Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2933075/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Supercapacitor Devices Based on Graphene Materials. Journal of Physical Chemistry C, 2009, 113, 13103-13107.	3.1	2,295
2	Hierarchical porous carbon derived from sulfonated pitch for electrical double layer capacitors. Journal of Power Sources, 2014, 252, 235-243.	7.8	147
3	A biomass-derived nitrogen-doped porous carbon for high-energy supercapacitor. Carbon, 2018, 140, 404-412.	10.3	102
4	Preparation of mesoporous carbons from amphiphilic carbonaceous material for high-performance electric double-layer capacitors. Journal of Power Sources, 2011, 196, 550-558.	7.8	95
5	Commercial activated carbon as a novel precursor of the amorphous carbon for high-performance sodium-ion batteries anode. Carbon, 2018, 129, 85-94.	10.3	84
6	Electrochemical study of lithiated transition metal oxide composite as symmetrical electrode for low temperature ceramic fuel cells. International Journal of Hydrogen Energy, 2013, 38, 11398-11405.	7.1	80
7	N-Doped Dual Carbon-Confined 3D Architecture rGO/Fe ₃ O ₄ /AC Nanocomposite for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 13470-13478.	8.0	71
8	Nanoporous carbon synthesised with coal tar pitch and its capacitive performance. Journal of Materials Chemistry A, 2013, 1, 9498.	10.3	64
9	Humic acids-based hierarchical porous carbons as high-rate performance electrodes for symmetric supercapacitors. Bioresource Technology, 2014, 163, 386-389.	9.6	64
10	SiO ₂ /Carbon Composite Microspheres with Hollow Core–Shell Structure as a High‣tability Electrode for Lithiumâ€ŀon Batteries. ChemElectroChem, 2017, 4, 542-549.	3.4	63
11	Solidâ~'Liquid Equilibria of Several Systems Containing Acetic Acid. Journal of Chemical & Engineering Data, 2004, 49, 756-759.	1.9	54
12	Core-shell Fe2N@amorphous carbon nanocomposite-filled 3D graphene framework: An additive-free anode material for lithium-ion batteries. Chemical Engineering Journal, 2019, 360, 1063-1070.	12.7	36
13	2D porous carbon nanosheets constructed using few-layer graphene sheets by a "medium-up―strategy for ultrahigh power-output EDLCs. Journal of Materials Chemistry A, 2018, 6, 10331-10339.	10.3	35
14	Rational valence modulation of bimetallic carbide assisted by defect engineering to enhance polysulfide conversion for lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 18032-18042.	10.3	35
15	Structure and surface elemental state analysis of polyimide resin film after carbonization and graphitization. Journal of Applied Polymer Science, 2008, 108, 1852-1856.	2.6	32
16	Pitch-based porous aerogel composed of carbon onion nanospheres for electric double layer capacitors. Carbon, 2018, 137, 304-312.	10.3	31
17	Sodium metal-assisted carbonization of pyrrole to prepare N-doped porous carbons for high-rate performance supercapacitors. Carbon, 2019, 153, 265-273.	10.3	31
18	Anatase-TiO2 nanocoating of Li4Ti5O12 nanorod anode for lithium-ion batteries. Journal of Alloys and Compounds, 2014, 601, 38-42.	5.5	30

MINGMING CHEN

#	Article	IF	CITATIONS
19	Frame-filling C/C composite for high-performance EDLCs with high withstanding voltage. Carbon, 2018, 131, 184-192.	10.3	29
20	CoB and BN composites enabling integrated adsorption/catalysis to polysulfides for inhibiting shuttle-effect in Li-S batteries. Journal of Energy Chemistry, 2021, 59, 220-228.	12.9	28
21	Effects of carbonization temperature on microstructure and electrochemical performances of phenolic resin-based carbon spheres. Journal of Physics and Chemistry of Solids, 2010, 71, 214-218.	4.0	27
22	MnO2/C composite electrodes free of conductive enhancer for supercapacitors. Journal of Alloys and Compounds, 2015, 653, 539-545.	5.5	25
23	Abundant Defects-Induced Interfaces Enabling Effective Anchoring for Polysulfides and Enhanced Kinetics in Lean Electrolyte Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 46767-46775.	8.0	25
24	An "in situ templating―strategy towards mesoporous carbon for high-rate supercapacitor and high-adsorption capacity on dye macromolecules. Carbon, 2020, 164, 19-27.	10.3	24
25	Bridging Li ₇ La ₃ Zr ₂ O ₁₂ Nanofibers with Poly(ethylene) Tj ET Batteries. ACS Applied Materials & amp; Interfaces, 2022, 14, 5346-5354.	[Qq1 1 0.7 8.0	784314 rgB 23
26	Uniform growth of Li2S promoted by an organophosphorus-based mediator for high rate Li-S batteries. Chemical Engineering Journal, 2020, 381, 122685.	12.7	22
27	Design and Preparation of Ligninâ€Based Hierarchical Porous Carbon Microspheres by High Efficient Activation for Electric Double Layer Capacitors. ChemElectroChem, 2018, 5, 2142-2149.	3.4	21
28	Hollow Co3O4 Nanosphere Surrounded by N-Doped Graphitic Carbon Filled within Multilayer-Sandwiched Graphene Network: A High-Performance Anode for Lithium Storage. Inorganic Chemistry, 2019, 58, 3416-3424.	4.0	21
29	Amphiphilic carbonaceous material-intervened solvothermal synthesis of LiFePO4. Journal of Power Sources, 2014, 263, 268-275.	7.8	20
30	Fabrication of conductive carbonaceous spherical architecture from pitch by spray drying. Chemical Engineering Science, 2015, 135, 109-116.	3.8	20
31	Nanoporous carbons from oxidized green needle coke for use in high performance supercapacitors. New Carbon Materials, 2015, 30, 141-149.	6.1	19
32	Studies on the performances of silica aerogel electrodes for the application of supercapacitor. Ionics, 2009, 15, 561-565.	2.4	18
33	Frame-filling structural nanoporous carbon from amphiphilic carbonaceous mixture comprising graphite oxide. Carbon, 2016, 108, 225-233.	10.3	18
34	Co-contribution of quenching and nanocrystallization on ionic-conductivity improvement of a composite electrolyte of polyethylene Oxide/Li7La3Zr2O12 nanofibers at 45ÂA°C for all-solid-state Li metal batteries. Journal of Power Sources, 2021, 496, 229843.	7.8	18
35	Characterization and electrochemical performance of activated carbon spheres prepared from potato starch by CO2 activation. Journal of Porous Materials, 2013, 20, 15-20.	2.6	13
36	Double-shelled MnO 2 hollow spheres for supercapacitors. Materials Letters, 2014, 136, 78-80.	2.6	13

MINGMING CHEN

#	Article	IF	CITATIONS
37	Highly Conductive Hierarchical C/C Composites to Eliminate Conductive Agent in EDLC Electrodes. ChemElectroChem, 2017, 4, 2793-2800.	3.4	12
38	Potassium-assisted carbonization of pyrrole to prepare nanorod-structured graphitic carbon with a high surface area for high-rate supercapacitors. Carbon, 2019, 155, 326-333.	10.3	12
39	Porous MnCo2O4-TiO2 microspheres with a yolk-shell structure for lithium-ion battery applications. Journal of Alloys and Compounds, 2017, 726, 445-452.	5.5	11
40	An Attempt to Improve Electrochemical Performances of Ligninâ€Based Hard Carbon Microspheres Anodes in Sodiumâ€lon Batteries by Using Hexamethylenetetramine. ChemistrySelect, 2018, 3, 9518-9525.	1.5	11
41	Facile Synthesis of N,Pâ€codoped Hard Carbon Nanoporous Microspheres from Lignin for Highâ€Performance Anodes of Sodiumâ€lon Batteries. ChemElectroChem, 2021, 8, 3544-3552.	3.4	11
42	Preparation of mesoporous MgO-templated carbons from phenolic resin and their applications for electric double-layer capacitors. Science Bulletin, 2013, 58, 992-997.	1.7	10
43	A method to observe the structure of the interface between mesocarbon microbeads and pitch. Journal of Colloid and Interface Science, 2014, 426, 206-208.	9.4	9
44	Amphiphilic carbonaceous material-based hierarchical porous carbon aerogels for supercapacitors. Journal of Solid State Electrochemistry, 2015, 19, 619-627.	2.5	9
45	Catalytic Synthesis of Hard/Soft Carbon Hybrids with Heteroatom Doping for Enhanced Sodium Storage. ChemistrySelect, 2019, 4, 3551-3558.	1.5	9
46	Optimizing the Crystallite Structure of Ligninâ€Based Nanospheres by Resinification for Highâ€Performance Sodiumâ€ion Battery Anodes. Energy Technology, 2020, 8, 1900694.	3.8	9
47	Zn Ion-Doped Amorphous NiWO4 Nanospheres as Cathode Material for High-Performance Asymmetric Supercapacitors. Journal of Electronic Materials, 2021, 50, 7240-7249.	2.2	9
48	MgO-templated mesoporous carbons using a pitch-based thermosetting carbon precursor. RSC Advances, 2016, 6, 100546-100553.	3.6	5
49	Humic acidâ€derived hierarchical porous carbon preparation using vacuum freezeâ€drying for electric double layer capacitors. Journal of the Chinese Chemical Society, 2018, 65, 835-840.	1.4	5
50	LiPAA with Shortâ€chain Anion Facilitating Li ₂ S <i>_x</i> (<i>x</i> â€‰â‰æ€‰4) Redu in Leanâ€electrolyte Lithium–sulfur Battery. Energy and Environmental Materials, 2022, 5, 877-882.	ction 12.8	4
51	Porous carbon nanospheres with moderately oriented domains for EDLC electrode. Journal of the Chinese Chemical Society, 2019, 66, 1499-1506.	1.4	3
52	Manganese–nickel bimetallic oxide electrocatalyzing redox reactions of lithium polysulfides in lithium–sulfur batteries. Sustainable Energy and Fuels, 2022, 6, 1426-1435.	4.9	3
53	Highly Conductive Hierarchical C/C Composites to Eliminate Conductive Agent in EDLC Electrodes. ChemElectroChem, 2017, 4, 2726-2726.	3.4	2
54	Hydrogen Spillover Facilitating Reduction of Surface Oxygen Species on Porous Carbon. ChemistrySelect, 2021, 6, 2178-2183.	1.5	2

#	Article	IF	CITATIONS
55	Ureaâ€assisted Strategy Controlling The Pore Structure And Chemical Composition Of The Porous Carbon For Highâ€performance Supercapacitors. ChemistrySelect, 2019, 4, 13012-13020.	1.5	1
56	sâ€MoO 3 /MoO 2 @C Hollow Tubes as Polysulfideâ€Filter for Lithiumâ€&ulfur Batteries. ChemistrySelect, 2021, 6, 3969-3975.	1.5	1
57	Mesoporous activated carbon from amphiphilic carbonaceous material and its application in EDLC. , 2010, , .		0