
## Lik Chuan Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2933062/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Distribution of normal human left ventricular myofiber stress at end diastole and end systole: a<br>target for in silico design of heart failure treatments. Journal of Applied Physiology, 2014, 117, 142-152.                      | 1.2 | 117       |
| 2  | Algisyl-LVRâ,,¢ with coronary artery bypass grafting reduces left ventricular wall stress and improves function in the failing human heart. International Journal of Cardiology, 2013, 168, 2022-2028.                               | 0.8 | 86        |
| 3  | Heterogeneous growth-induced prestrain in the heart. Journal of Biomechanics, 2015, 48, 2080-2089.                                                                                                                                   | 0.9 | 75        |
| 4  | Modeling Pathologies of Diastolic and Systolic Heart Failure. Annals of Biomedical Engineering, 2016, 44, 112-127.                                                                                                                   | 1.3 | 73        |
| 5  | Human Cardiac Function Simulator for the Optimal Design of a Novel Annuloplasty Ring with a<br>Sub-valvular Element for Correction of Ischemic Mitral Regurgitation. Cardiovascular Engineering<br>and Technology, 2015, 6, 105-116. | 0.7 | 54        |
| 6  | First Evidence of Depressed Contractility in the Border Zone of a Human Myocardial Infarction.<br>Annals of Thoracic Surgery, 2012, 93, 1188-1193.                                                                                   | 0.7 | 53        |
| 7  | Growth and remodeling of the left ventricle: A case study of myocardial infarction and surgical ventricular restoration. Mechanics Research Communications, 2012, 42, 134-141.                                                       | 1.0 | 53        |
| 8  | An integrated electromechanical-growth heart model for simulating cardiac therapies. Biomechanics and Modeling in Mechanobiology, 2016, 15, 791-803.                                                                                 | 1.4 | 50        |
| 9  | Image-based computational assessment of vascular wall mechanics and hemodynamics in pulmonary arterial hypertension patients. Journal of Biomechanics, 2018, 68, 84-92.                                                              | 0.9 | 44        |
| 10 | A computational model that predicts reverse growth in response to mechanical unloading.<br>Biomechanics and Modeling in Mechanobiology, 2015, 14, 217-229.                                                                           | 1.4 | 39        |
| 11 | Applications of Computational Modeling in Cardiac Surgery. Journal of Cardiac Surgery, 2014, 29, 293-302.                                                                                                                            | 0.3 | 38        |
| 12 | Patient-specific finite element modeling of the Cardiokinetix Parachute® device: effects on left ventricular wall stress and function. Medical and Biological Engineering and Computing, 2014, 52, 557-566.                          | 1.6 | 38        |
| 13 | Mathematical modeling of cardiac growth and remodeling. Wiley Interdisciplinary Reviews: Systems<br>Biology and Medicine, 2016, 8, 211-226.                                                                                          | 6.6 | 37        |
| 14 | Analysis of patient-specific surgical ventricular restoration: importance of an ellipsoidal left<br>ventricular geometry for diastolic and systolic function. Journal of Applied Physiology, 2013, 115,<br>136-144.                  | 1.2 | 36        |
| 15 | Utility of high-resolution electroanatomic mapping of the left ventricle using a multispline basket catheter in a swine model of chronic myocardial infarction. Heart Rhythm, 2015, 12, 144-154.                                     | 0.3 | 36        |
| 16 | Patient-Specific Finite Element–Based Analysis of Ventricular Myofiber Stress After Coapsys:<br>Importance of Residual Stress. Annals of Thoracic Surgery, 2012, 93, 1964-1971.                                                      | 0.7 | 34        |
| 17 | Equilibrated warping: Finite element image registration with finite strain equilibrium gap regularization. Medical Image Analysis, 2018, 50, 1-22.                                                                                   | 7.0 | 34        |
| 18 | Organâ€level validation of a crossâ€bridge cycling descriptor in a left ventricular finite element model:<br>effects of ventricular loading on myocardial strains. Physiological Reports, 2017, 5, e13392.                           | 0.7 | 33        |

Lik Chuan Lee

| #  | Article                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Patient-Specific Computational Analysis of Ventricular Mechanics in Pulmonary Arterial Hypertension.<br>Journal of Biomechanical Engineering, 2016, 138, .                                                                                                          | 0.6 | 32        |
| 20 | Efficient estimation of personalized biventricular mechanical function employing gradientâ€based optimization. International Journal for Numerical Methods in Biomedical Engineering, 2018, 34, e2982.                                                              | 1.0 | 30        |
| 21 | A Novel Method for Quantifying Smooth Regional Variations in Myocardial Contractility Within an<br>Infarcted Human Left Ventricle Based on Delay-Enhanced Magnetic Resonance Imaging. Journal of<br>Biomechanical Engineering, 2015, 137, 081009.                   | 0.6 | 29        |
| 22 | High Spatial Resolution Multi-Organ Finite Element Modeling of Ventricular-Arterial Coupling.<br>Frontiers in Physiology, 2018, 9, 119.                                                                                                                             | 1.3 | 28        |
| 23 | Reduction in Left Ventricular Wall Stress and Improvement in Function in Failing Hearts using Algisyl-LVR. Journal of Visualized Experiments, 2013, , .                                                                                                             | 0.2 | 26        |
| 24 | A Novel Method for Quantifying In-Vivo Regional Left Ventricular Myocardial Contractility in the<br>Border Zone of a Myocardial Infarction. Journal of Biomechanical Engineering, 2011, 133, 094506.                                                                | 0.6 | 23        |
| 25 | Bioinjection treatment: Effects of post-injection residual stress on left ventricular wall stress.<br>Journal of Biomechanics, 2014, 47, 3115-3119.                                                                                                                 | 0.9 | 23        |
| 26 | Model of Anisotropic Reverse Cardiac Growth in Mechanical Dyssynchrony. Scientific Reports, 2019, 9, 12670.                                                                                                                                                         | 1.6 | 21        |
| 27 | In-silico assessment of the effects of right ventricular assist device on pulmonary arterial<br>hypertension using an image based biventricular modeling framework. Mechanics Research<br>Communications, 2019, 97, 101-111.                                        | 1.0 | 20        |
| 28 | Computational Modeling Studies of the Roles of Left Ventricular Geometry, Afterload, and Muscle<br>Contractility on Myocardial Strains in Heart Failure with Preserved Ejection Fraction. Journal of<br>Cardiovascular Translational Research, 2021, 14, 1131-1145. | 1.1 | 20        |
| 29 | Computational quantification of patient-specific changes in ventricular dynamics associated with pulmonary hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H1363-H1375.                                                 | 1.5 | 16        |
| 30 | Multiscale Modeling Framework of Ventricular-Arterial Bi-directional Interactions in the Cardiopulmonary Circulation. Frontiers in Physiology, 2020, 11, 2.                                                                                                         | 1.3 | 16        |
| 31 | Biomechanics of Human Fetal Hearts with Critical Aortic Stenosis. Annals of Biomedical Engineering, 2021, 49, 1364-1379.                                                                                                                                            | 1.3 | 13        |
| 32 | Quantification of Biventricular Strains in Heart Failure With Preserved Ejection Fraction Patient<br>Using Hyperelastic Warping Method. Frontiers in Physiology, 2018, 9, 1295.                                                                                     | 1.3 | 12        |
| 33 | Effects of Mechanical Dyssynchrony on Coronary Flow: Insights From a Computational Model of Coupled Coronary Perfusion With Systemic Circulation. Frontiers in Physiology, 2020, 11, 915.                                                                           | 1.3 | 10        |
| 34 | Role of coronary flow regulation and cardiac-coronary coupling in mechanical dyssynchrony<br>associated with right ventricular pacing. American Journal of Physiology - Heart and Circulatory<br>Physiology, 2021, 320, H1037-H1054.                                | 1.5 | 10        |
| 35 | Contribution of left ventricular residual stress by myocytes and collagen: existence of inter-constituent mechanical interaction. Biomechanics and Modeling in Mechanobiology, 2018, 17, 985-999.                                                                   | 1.4 | 9         |
| 36 | Validation of Equilibrated Warping—Image Registration with Mechanical Regularization—On 3D<br>Ultrasound Images. Lecture Notes in Computer Science, 2019, , 334-341.                                                                                                | 1.0 | 9         |

Lik Chuan Lee

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Force-dependent recruitment from myosin OFF-state increases end-systolic pressure–volume<br>relationship in left ventricle. Biomechanics and Modeling in Mechanobiology, 2020, 19, 2683-2692.         | 1.4 | 9         |
| 38 | Mechanical Stimuli for Left Ventricular Growth During Pressure Overload. Experimental Mechanics, 2021, 61, 131-146.                                                                                   | 1.1 | 8         |
| 39 | Patient-Specific Computational Analysis of Hemodynamics and Wall Mechanics and Their Interactions in Pulmonary Arterial Hypertension. Frontiers in Bioengineering and Biotechnology, 2020, 8, 611149. | 2.0 | 8         |
| 40 | Transmural Distribution of Coronary Perfusion and Myocardial Work Density Due to Alterations in Ventricular Loading, Geometry and Contractility. Frontiers in Physiology, 2021, 12, 744855.           | 1.3 | 8         |
| 41 | Three-dimensional biventricular strains in pulmonary arterial hypertension patients using hyperelastic warping. Computer Methods and Programs in Biomedicine, 2020, 189, 105345.                      | 2.6 | 7         |
| 42 | Microstructure-based finite element model of left ventricle passive inflation. Acta Biomaterialia, 2019, 90, 241-253.                                                                                 | 4.1 | 5         |
| 43 | Overview of mathematical modeling of myocardial blood flow regulation. American Journal of<br>Physiology - Heart and Circulatory Physiology, 2020, 318, H966-H975.                                    | 1.5 | 5         |
| 44 | Optimization of cardiac resynchronization therapy based on a cardiac electromechanics-perfusion computational model. Computers in Biology and Medicine, 2022, 141, 105050.                            | 3.9 | 5         |
| 45 | Left Ventricular Geometry, Tissue Composition, and Residual Stress in High Fat Diet Dahl-Salt Sensitive<br>Rats. Experimental Mechanics, 2021, 61, 191-201.                                           | 1.1 | 3         |
| 46 | Algisyl-LVR Reduces Left Ventricular Wall Stress and Improves Function in the Failing Human Heart.<br>Journal of Cardiac Failure, 2012, 18, S57-S58.                                                  | 0.7 | 2         |
| 47 | Physics-based computer simulation of the long-term effects of cardiac regenerative therapies.<br>Technology, 2016, 04, 23-29.                                                                         | 1.4 | 1         |
| 48 | Invited Commentary. Annals of Thoracic Surgery, 2014, 98, 80.                                                                                                                                         | 0.7 | 0         |