Xia Jun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2932890/publications.pdf

Version: 2024-02-01

		136950	133252
127	4,165	32	59
papers	citations	h-index	g-index
131	131	131	4101
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and groundâ€based measurements. Water Resources Research, 2013, 49, 2110-2118.	4.2	598
2	Opportunities and challenges of the Sponge City construction related to urban water issues in China. Science China Earth Sciences, 2017, 60, 652-658.	5.2	295
3	Quantification of effects of climate variations and human activities on runoff by a monthly water balance model: A case study of the Chaobai River basin in northern China. Water Resources Research, 2009, 45, .	4.2	242
4	Water problems and hydrological research in the Yellow River and the Huai and Hai River basins of China. Hydrological Processes, 2004, 18, 2197-2210.	2.6	207
5	Water quality variation in the highly disturbed Huai River Basin, China from 1994 to 2005 by multi-statistical analyses. Science of the Total Environment, 2014, 496, 594-606.	8.0	97
6	Water resources vulnerability and adaptive management in the Huang, Huai and Hai river basins of China. Water International, 2012, 37, 523-536.	1.0	85
7	Monitoring the spatio-temporal changes of terrestrial water storage using GRACE data in the Tarim River basin between 2002 and 2015. Science of the Total Environment, 2017, 595, 218-228.	8.0	81
8	Hydrological cycle and water resources in a changing world: A review. Geography and Sustainability, 2021, 2, 115-122.	4.3	81
9	Implications of Modelled Climate and Land Cover Changes on Runoff in the Middle Route of the South to North Water Transfer Project in China. Water Resources Management, 2015, 29, 2563-2579.	3.9	74
10	Land use/land cover prediction and analysis of the middle reaches of the Yangtze River under different scenarios. Science of the Total Environment, 2022, 833, 155238.	8.0	63
11	Changes in reference evapotranspiration and its driving factors in the middle reaches of Yellow River Basin, China. Science of the Total Environment, 2017, 607-608, 1151-1162.	8.0	62
12	A new era of flood control strategies from the perspective of managing the 2020 Yangtze River flood. Science China Earth Sciences, 2021 , 64 , 1 -9.	5.2	61
13	Nonâ€point source pollution modelling using Soil and Water Assessment Tool and its parameter sensitivity analysis in Xin'anjiang catchment, China. Hydrological Processes, 2014, 28, 1627-1640.	2.6	59
14	Comprehensive assessment of drought risk in the arid region of Northwest China based on the global palmer drought severity index gridded data. Science of the Total Environment, 2018, 627, 951-962.	8.0	59
15	Vulnerability of and risk to water resources in arid and semi-arid regions of West China under a scenario of climate change. Climatic Change, 2017, 144, 549-563.	3.6	58
16	Major advances in studies of the physical geography and living environment of China during the past 70 years and future prospects. Science China Earth Sciences, 2019, 62, 1665-1701.	5.2	58
17	Analysis of Impacts of Climate Change and Human Activities on Hydrological Drought: a Case Study in the Wei River Basin, China. Water Resources Management, 2018, 32, 1421-1438.	3.9	55
18	Can Remotely Sensed Actual Evapotranspiration Facilitate Hydrological Prediction in Ungauged Regions Without Runoff Calibration?. Water Resources Research, 2020, 56, e2019WR026236.	4.2	55

#	Article	IF	Citations
19	Variations and statistical probability characteristic analysis of extreme precipitation events under climate change in Haihe River Basin, China. Hydrological Processes, 2014, 28, 913-925.	2.6	53
20	Panta Rhei 2013–2015: global perspectives on hydrology, society and change. Hydrological Sciences Journal, 0, , 1-18.	2.6	53
21	Separating the effects of climate change and human activities on runoff over different time scales in the Zhang River basin. Stochastic Environmental Research and Risk Assessment, 2014, 28, 401-413.	4.0	52
22	The contribution of internal climate variability to climate change impacts on droughts. Science of the Total Environment, 2019, 684, 229-246.	8.0	51
23	Inland water bodies in China: Features discovered in the long-term satellite data. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25491-25496.	7.1	50
24	Dramatic decrease in streamflow from the headwater source in the central route of China's water diversion project: Climatic variation or human influence?. Journal of Geophysical Research, 2012, 117, .	3.3	49
25	Characteristics of dry-wet abrupt alternation events in the middle and lower reaches of the Yangtze River Basin and the relationship with ENSO. Journal of Chinese Geography, 2018, 28, 1039-1058.	3.9	49
26	Copulas-Based Drought Characteristics Analysis and Risk Assessment across the Loess Plateau of China. Water Resources Management, 2018, 32, 547-564.	3.9	47
27	Regional frequency analysis of extreme precipitation and its spatio-temporal characteristics in the Huai River Basin, China. Natural Hazards, 2014, 70, 195-215.	3.4	45
28	Investigating the variation and non-stationarity in precipitation extremes based on the concept of event-based extreme precipitation. Journal of Hydrology, 2015, 530, 785-798.	5.4	45
29	Effect of projected climate change on the hydrological regime of the Yangtze River Basin, China. Stochastic Environmental Research and Risk Assessment, 2018, 32, 1-16.	4.0	45
30	Using Remote Sensing Dataâ€Based Hydrological Model Calibrations for Predicting Runoff in Ungauged or Poorly Gauged Catchments. Water Resources Research, 2020, 56, e2020WR028205.	4.2	45
31	Impacts of Global Climate Warming on Meteorological and Hydrological Droughts and Their Propagations. Earth's Future, 2022, 10, .	6.3	39
32	How is the risk of hydrological drought in the Tarim River Basin, Northwest China?. Science of the Total Environment, 2019, 693, 133555.	8.0	37
33	Influences of anthropogenic activities and topography on water quality in the highly regulated Huai River basin, China. Environmental Science and Pollution Research, 2016, 23, 21460-21474.	5.3	36
34	Evaluation of Six Satellite-Based Precipitation Products and Their Ability for Capturing Characteristics of Extreme Precipitation Events over a Climate Transition Area in China. Remote Sensing, 2019, 11, 1477.	4.0	34
35	Changes of flow regimes and precipitation in Huai River Basin in the last half century. Hydrological Processes, 2011, 25, 246-257.	2.6	33
36	Regional Patterns of Extreme Precipitation and Urban Signatures in Metropolitan Areas. Journal of Geophysical Research D: Atmospheres, 2019, 124, 641-663.	3.3	33

#	Article	IF	CITATIONS
37	Wet and dry spell analysis using copulas. International Journal of Climatology, 2016, 36, 476-491.	3.5	31
38	Reconstruction of terrestrial water storage anomalies in Northwest China during 1948–2002 using GRACE and GLDAS products. Hydrology Research, 2018, 49, 1594-1607.	2.7	31
39	Quantifying Water Scarcity in Northern China Within the Context of Climatic and Societal Changes and Southâ€toâ€North Water Diversion. Earth's Future, 2020, 8, e2020EF001492.	6.3	30
40	Modeling water requirements of major crops and their responses to climate change in the North China Plain. Environmental Earth Sciences, 2015, 74, 3531-3541.	2.7	28
41	Characterizing and explaining spatio-temporal variation of water quality in a highly disturbed river by multi-statistical techniques. SpringerPlus, 2016, 5, 1171.	1.2	28
42	Using stable hydrogen and oxygen isotopes to study water movement in soil-plant-atmosphere continuum at Poyang Lake wetland, China. Wetlands Ecology and Management, 2017, 25, 221-234.	1.5	26
43	Comparison of the streamflow sensitivity to aridity index between the Danjiangkou Reservoir basin and Miyun Reservoir basin, China. Theoretical and Applied Climatology, 2013, 111, 683-691.	2.8	25
44	Spatiotemporal variation and statistical characteristic of extreme precipitation in the middle reaches of the Yellow River Basin during 1960–2013. Theoretical and Applied Climatology, 2019, 135, 391-408.	2.8	24
45	Nonstationary Frequency Analysis of Censored Data: A Case Study of the Floods in the Yangtze River From 1470 to 2017. Water Resources Research, 2020, 56, e2020WR027112.	4.2	24
46	Hydrologic and water quality performance of a laboratory scale bioretention unit. Frontiers of Environmental Science and Engineering, 2018, 12, 1.	6.0	23
47	Not vegetation itself but mis-revegetation reduces water resources. Science China Earth Sciences, 2021, 64, 404-411.	5.2	23
48	Research and Analysis of Ecological Environment Quality in the Middle Reaches of the Yangtze River Basin between 2000 and 2019. Remote Sensing, 2021, 13, 4475.	4.0	23
49	The renewability of water resources and its quantification in the Yellow River basin, China. Hydrological Processes, 2004, 18, 2327-2336.	2.6	22
50	Quantifying the effects of climate change and human activities on runoff in the water source area of Beijing, China. Hydrological Sciences Journal, 2014, 59, 1794-1807.	2.6	22
51	Sensitivity and Interaction Analysis Based on Sobol' Method and Its Application in a Distributed Flood Forecasting Model. Water (Switzerland), 2015, 7, 2924-2951.	2.7	22
52	A processâ€based insight into nonstationarity of the probability distribution of annual runoff. Water Resources Research, 2017, 53, 4214-4235.	4.2	21
53	Drought Characteristic Analysis Based on an Improved PDSI in the Wei River Basin of China. Water (Switzerland), 2017, 9, 178.	2.7	21
54	Estimation of water consumption for ecosystems based on Vegetation Interfaces Processes Model: A case study of the Aksu River Basin, Northwest China. Science of the Total Environment, 2018, 613-614, 186-195.	8.0	21

#	Article	IF	CITATIONS
55	The Effect of Sponge City Construction for Reducing Directly Connected Impervious Areas on Hydrological Responses at the Urban Catchment Scale. Water (Switzerland), 2020, 12, 1163.	2.7	20
56	Adaptive pressure-driven multi-criteria spatial decision-making for a targeted placement of green and grey runoff control infrastructures. Water Research, 2022, 212, 118126.	11.3	20
57	Effect of Three Gorges Dam on Poyang Lake water level at daily scale based on machine learning. Journal of Chinese Geography, 2021, 31, 1598-1614.	3.9	19
58	Risk assessment of water resource shortages in the Aksu River basin of northwest China under climate change. Journal of Environmental Management, 2022, 305, 114394.	7.8	19
59	Evaluation de l'influence du changement climatique et du détournement d'eau entre bassins Sur le bassin versant de la rivière Haihe dans l'Est de la Chine: une approche de modélisation couplée. Hydrogeology Journal, 2018, 26, 1455-1473.	2.1	18
60	Discrete wavelet transform-based investigation into the variability of standardized precipitation index in Northwest China during 1960–2014. Theoretical and Applied Climatology, 2018, 132, 167-180.	2.8	18
61	Advanced investigation on the change in the streamflow into the water source of the middle route of China's water diversion project. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6950-6961.	3.3	17
62	A new framework for the identification of flash drought: Multivariable and probabilistic statistic perspectives. International Journal of Climatology, 2021, 41, 5862-5878.	3.5	17
63	Regional extremeâ€dryâ€spell frequency analysis using the Lâ€moments method in the middle reaches of the Yellow River Basin, China. Hydrological Processes, 2014, 28, 4694-4707.	2.6	16
64	Using raw regional climate model outputs for quantifying climate change impacts on hydrology. Hydrological Processes, 2017, 31, 4398-4413.	2.6	16
65	Evaluation of baseflow modelling structure in monthly water balance models using 443 Australian catchments. Journal of Hydrology, 2020, 591, 125572.	5.4	16
66	Developing a comprehensive evaluation method for Interconnected River System Network assessment: A case study in Tangxun Lake group. Journal of Chinese Geography, 2019, 29, 389-405.	3.9	15
67	Spatial and temporal characteristics of rainfall across Ganjiang River Basin in China. Meteorology and Atmospheric Physics, 2016, 128, 167-179.	2.0	14
68	Multi-object approach and its application to adaptive water management under climate change. Journal of Chinese Geography, 2017, 27, 259-274.	3.9	14
69	A Censored Shifted Mixture Distribution Mapping Method to Correct the Bias of Daily IMERG Satellite Precipitation Estimates. Remote Sensing, 2019, 11, 1345.	4.0	14
70	Incorporating fish habitat requirements of the complete life cycle into ecological flow regime estimation of rivers. Ecohydrology, 2020, 13, e2204.	2.4	14
71	Spatial-temporal collaborative relation among ecological footprint depth/size and economic development in Chengyu urban agglomeration. Science of the Total Environment, 2022, 812, 151510.	8.0	14
72	Analysis of the spatiotemporal changes in terrestrial water storage anomaly and impacting factors over the typical mountains in China. International Journal of Remote Sensing, 2018, 39, 505-524.	2.9	13

#	Article	IF	CITATIONS
73	Risk assessment of non-point source pollution based on landscape pattern in the Hanjiang River basin, China. Environmental Science and Pollution Research, 2021, 28, 64322-64336.	5.3	13
74	An Analytical Baseflow Coefficient Curve for Depicting the Spatial Variability of Mean Annual Catchment Baseflow. Water Resources Research, 2021, 57, e2020WR029529.	4.2	13
75	Experimental and Simulation Studies on the Impact of Sluice Regulation on Water Quantity and Quality Processes. Journal of Hydrologic Engineering - ASCE, 2012, 17, 467-477.	1.9	12
76	Utilizing Satellite Surface Soil Moisture Data in Calibrating a Distributed Hydrological Model Applied in Humid Regions Through a Multi-Objective Bayesian Hierarchical Framework. Remote Sensing, 2019, 11, 1335.	4.0	12
77	Optimal control of nonpoint source pollution in the Bahe River Basin, Northwest China, based on the SWAT model. Environmental Science and Pollution Research, 2021, 28, 55330-55343.	5.3	12
78	Efficiency and driving force assessment of an integrated urban water use and wastewater treatment system: Evidence from spatial panel data of the urban agglomeration on the middle reaches of the Yangtze River. Science of the Total Environment, 2022, 805, 150232.	8.0	12
79	Investigation on flood event variations at space and time scales in the Huaihe River Basin of China using flood behavior classification. Journal of Chinese Geography, 2020, 30, 2053-2075.	3.9	12
80	Using the RESC Model and Diversity Indexes to Assess the Cross-Scale Water Resource Vulnerability and Spatial Heterogeneity in the Huai River Basin, China. Water (Switzerland), 2016, 8, 431.	2.7	11
81	Runoff of arid and semi-arid regions simulated and projected by CLM-DTVGM and its multi-scale fluctuations as revealed by EEMD analysis. Journal of Arid Land, 2016, 8, 506-520.	2.3	11
82	Parameter Uncertainty of a Snowmelt Runoff Model and Its Impact on Future Projections of Snowmelt Runoff in a Data-Scarce Deglaciating River Basin. Water (Switzerland), 2019, 11, 2417.	2.7	11
83	A review of the ecohydrology discipline: Progress, challenges, and future directions in China. Journal of Chinese Geography, 2021, 31, 1085-1101.	3.9	11
84	Bias correction framework for satellite precipitation products using a rain/no rain discriminative model. Science of the Total Environment, 2022, 818, 151679.	8.0	11
85	The hydrogen and oxygen isotopic compositions of precipitation in a forested watershed of the South Qinling Mts., China. Environmental Science and Pollution Research, 2018, 25, 6720-6728.	5.3	10
86	Quantifying the Impacts of Climate Change and Vegetation Variation on Actual Evapotranspiration Based on the Budyko Hypothesis in North and South Panjiang Basin, China. Water (Switzerland), 2020, 12, 508.	2.7	10
87	Influence of disaster risk, exposure and water quality on vulnerability of surface water resources under a changing climate in the Haihe River basin. Water International, 2017, 42, 462-485.	1.0	9
88	Phototransformation of p-arsanilic acid in aqueous media containing nitrogen species. Chemosphere, 2018, 212, 777-783.	8.2	9
89	A Multi-Index Evaluation System for Identifying the Optimal Configuration of LID Facilities in the Newly Built and Built-up Urban Areas. Water Resources Management, 2021, 35, 2129-2147.	3.9	9
90	An Integrated Management Approach for Water Quality and Quantity: Case Studies in North China. International Journal of Water Resources Development, 2012, 28, 299-312.	2.0	8

#	Article	IF	Citations
91	Changes of rainfall and its possible reasons in the Nansi Lake Basin, China. Stochastic Environmental Research and Risk Assessment, 2016, 30, 1099-1113.	4.0	8
92	Estimating ecological flows for fish overwintering in plain rivers using a method based on water temperature and critical water depth. Ecohydrology, 2019, 12, e2098.	2.4	8
93	CAUSAL ANALYSIS ON THE SPECIFIED PAROXYSMAL WATER POLLUTION INCIDENTS IN THE HUAI RIVER BASIN, CHINA. Environmental Engineering and Management Journal, 2015, 14, 139-151.	0.6	8
94	Impacts of climate change on water resources in the Luan River basin in North China. Water International, 2012, 37, 552-563.	1.0	7
95	Climate change impacts on hydrological processes in the water source area of the Middle Route of the South-to-North Water Diversion Project. Water International, 2012, 37, 564-584.	1.0	7
96	A hydrological model modified for application to flood forecasting in medium and small-scale catchments. Arabian Journal of Geosciences, 2016, 9, 1.	1.3	7
97	Assessing Risks from Groundwater Exploitation and Utilization: Case Study of the Shanghai Megacity, China. Water (Switzerland), 2019, 11, 1775.	2.7	7
98	Multi-Scenario Integration Comparison of CMADS and TMPA Datasets for Hydro-Climatic Simulation over Ganjiang River Basin, China. Water (Switzerland), 2020, 12, 3243.	2.7	7
99	Pre-processing rainfall data from multiple gauges to improve TOPMODEL simulation results in a large semi-arid region. Hydrological Processes, 2004, 18, 2313-2325.	2.6	6
100	Identification of Hydrological Drought in Eastern China Using a Time-Dependent Drought Index. Water (Switzerland), 2018, 10, 315.	2.7	6
101	Dominant change pattern of extreme precipitation and its potential causes in Shandong Province, China. Scientific Reports, 2022, 12, 858.	3.3	6
102	Combined risk assessment of nonstationary monthly water quality based on Markov chain and time-varying copula. Water Science and Technology, 2017, 75, 693-704.	2.5	5
103	Effects of climate change on major elements of the hydrological cycle in Aksu River basin, northwest China. International Journal of Climatology, 2022, 42, 5359-5372.	3.5	5
104	BA_EnCaps: Dense Capsule Architecture for Thermal Scrutiny. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-11.	6.3	5
105	Trend analysis of land surface temperatures using time series segmentation algorithm. Journal of Intelligent and Fuzzy Systems, 2016, 31, 1121-1131.	1.4	4
106	Analysis and Control of the Physicochemical Quality of Groundwater in the Chari Baguirmi Region in Chad. Water (Switzerland), 2020, 12, 2826.	2.7	4
107	Groundwater Usage in Arid West China. Water International, 2005, 30, 468-476.	1.0	3
108	Research on Runoff Sub-model of Non-point Source Pollution Model. Water International, 2007, 32, 428-438.	1.0	3

#	Article	lF	Citations
109	Study on the Variation of Terrestrial Water Storage and the Identification of Its Relationship with Hydrological Cycle Factors in the Tarim River Basin, China. Advances in Meteorology, 2017, 2017, 1-11.	1.6	3
110	Determining the Regional Carrying Capacity of the Wuhan City Circle Based on the Improved Ecological Footprint Method. Journal of the American Water Resources Association, 2021, 57, 585-601.	2.4	3
111	Coupling analysis of surface runoff variation with atmospheric teleconnection indices in the middle reaches of the Yangtze River. Theoretical and Applied Climatology, 2022, 148, 1513-1527.	2.8	3
112	Improved dynamic simulation technique for hydrodynamics and water quality of river-connected lakes. Water Science and Technology: Water Supply, 2020, 20, 3752-3767.	2.1	2
113	Response of Hydrodynamics and Water-quality Conditions to Climate Change in a Shallow Lake. Water Resources Management, 2021, 35, 4961-4976.	3.9	2
114	Water crises and hydrology in North China. Hydrological Processes, 2004, 18, 2195-2196.	2.6	1
115	Urban Functional Regions Discovering Based on Deep Learning., 2019,,.		1
116	Reply to Zhang et al.: Using long-term all-available Landsat data to study water bodies over large areas represents a paradigm shift. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6310-6311.	7.1	1
117	Parameter regionalization of the FLEX-Global hydrological model. Science China Earth Sciences, 2021, 64, 571-588.	5.2	1
118	A novel transformation pathway of p-arsanilic acid in water by colloid ferric hydroxide under UVA light. Environmental Science and Pollution Research, 2022, 29, 5043-5051.	5.3	1
119	Opportunities and challenges of the Sponge City construction related to urban water issues in China. , 2017, 60, 652.		1
120	Change of Impervious Surface of Chengdu City, China. , 2020, , .		1
121	Drought monitoring and warning in the middle reach of Yangtze River with MODIS., 2015,,.		0
122	The application of ant colony algorithm in emergency rescue with GIS. , 2015, , .		0
123	Land Price Assesment Based on Deep Neural Network. , 2019, , .		0
124	Introduction to the Featured Collection: Water Security â€" New Technologies, Strategies, Policies, and Institutions. Journal of the American Water Resources Association, 2021, 57, 527-529.	2.4	0
125	Drought Monitoring in Sub-Sahara Africa. , 2020, , .		0
126	Land Use and Land Cover Change of Ghana. , 2020, , .		0

#	Article	IF	CITATIONS
127	Occurrence of Drought Events at the Land–Atmosphere Interface in Central Asia Assessed via Advanced Microwave Scanning Radiometer Data. International Journal of Climatology, 0, , .	3.5	0