Anthony P Bretscher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2932738/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The RabGAPs EPI64A and EPI64B regulate the apical structure of epithelial cellsâ€. Molecular Biology of the Cell, 2022, 33, ar8.	2.1	0
2	Effector-mediated ERM activation locally inhibits RhoA activity to shape the apical cell domain. Journal of Cell Biology, 2021, 220, .	5.2	23
3	Yeast Rgd3 is a phospho-regulated F-BAR–containing RhoCAP involved in the regulation of Rho3 distribution and cell morphology. Molecular Biology of the Cell, 2020, 31, 2570-2582.	2.1	4
4	Yeast Aim21/Tda2 both regulates free actin by reducing barbed end assembly and forms a complex with Cap1/Cap2 to balance actin assembly between patches and cables. Molecular Biology of the Cell, 2018, 29, 923-936.	2.1	19
5	Regulation of actin-based apical structures on epithelial cells. Journal of Cell Science, 2018, 131, .	2.0	77
6	Ezrin activation by LOK phosphorylation involves a PIP2-dependent wedge mechanism. ELife, 2017, 6, .	6.0	48
7	Kinesin-related Smy1 enhances the Rab-dependent association of myosin-V with secretory cargo. Molecular Biology of the Cell, 2016, 27, 2450-2462.	2.1	13
8	The function and dynamics of the apical scaffolding protein E3KARP are regulated by cell-cycle phosphorylation. Molecular Biology of the Cell, 2015, 26, 3615-3627.	2.1	6
9	Structure, Regulation, and Functional Diversity of Microvilli on the Apical Domain of Epithelial Cells. Annual Review of Cell and Developmental Biology, 2015, 31, 593-621.	9.4	136
10	Tracking individual secretory vesicles during exocytosis reveals an ordered and regulated process. Journal of Cell Biology, 2015, 210, 181-189.	5.2	75
11	Head-to-tail regulation is critical for the in vivo function of myosin V. Journal of Cell Biology, 2015, 209, 359-365.	5.2	29
12	Dynamics of ezrin and EBP50 in regulating microvilli on the apical aspect of epithelial cells. Biochemical Society Transactions, 2014, 42, 189-194.	3.4	45
13	The surprising dynamics of scaffolding proteins. Molecular Biology of the Cell, 2014, 25, 2315-2319.	2.1	63
14	Rapid Glucose Depletion Immobilizes Active Myosin V on Stabilized Actin Cables. Current Biology, 2014, 24, 2471-2479.	3.9	19
15	Cordon Bleu serves as a platform at the basal region of microvilli, where it regulates microvillar length through its WH2 domains. Molecular Biology of the Cell, 2014, 25, 2817-2827.	2.1	29
16	Interactome Analysis Reveals Ezrin Can Adopt Multiple Conformational States. Journal of Biological Chemistry, 2013, 288, 35437-35451.	3.4	40
17	Magazine or journal—what is the difference? The role of the monitoring editor. Molecular Biology of the Cell, 2013, 24, 887-889.	2.1	1
18	Deconstructing formin-dependent actin cable assembly. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18744-18745.	7.1	3

ANTHONY P BRETSCHER

#	Article	IF	CITATIONS
19	PDZ interactions regulate rapid turnover of the scaffolding protein EBP50 in microvilli. Journal of Cell Biology, 2012, 198, 195-203.	5.2	47
20	Local phosphocycling mediated by LOK/SLK restricts ezrin function to the apical aspect of epithelial cells. Journal of Cell Biology, 2012, 199, 969-984.	5.2	96
21	Myosin-V Is Activated by Binding Secretory Cargo and Released in Coordination with Rab/Exocyst Function. Developmental Cell, 2012, 23, 769-781.	7.0	63
22	The Tumor Suppressor Merlin Controls Growth in Its Open State, and Phosphorylation Converts It to a Less-Active More-Closed State. Developmental Cell, 2012, 22, 703-705.	7.0	56
23	PI4P and Rab Inputs Collaborate in Myosin-V-Dependent Transport of Secretory Compartments in Yeast. Developmental Cell, 2011, 20, 47-59.	7.0	95
24	Organizing the cell cortex: the role of ERM proteins. Nature Reviews Molecular Cell Biology, 2010, 11, 276-287.	37.0	884
25	The scaffolding protein EBP50 regulates microvillar assembly in a phosphorylation-dependent manner. Journal of Cell Biology, 2010, 191, 397-413.	5.2	63
26	A Regulated Complex of the Scaffolding Proteins PDZK1 and EBP50 with Ezrin Contribute to Microvillar Organization. Molecular Biology of the Cell, 2010, 21, 1519-1529.	2.1	57
27	Epithelial Polarity: Dual Lkb1 Pathways Regulate Apical Microvilli. Developmental Cell, 2009, 16, 491-492.	7.0	2
28	Self-masking in an Intact ERM-merlin Protein: An Active Role for the Central α-Helical Domain. Journal of Molecular Biology, 2007, 365, 1446-1459.	4.2	111
29	EPI64 regulates microvillar subdomains and structure. Journal of Cell Biology, 2006, 175, 803-813.	5.2	73
30	Ezrin Mutants Affecting Dimerization and Activationâ€. Biochemistry, 2005, 44, 3926-3932.	2.5	41
31	Microtubule Tips Redirect Actin Assembly. Developmental Cell, 2005, 8, 458-459.	7.0	3
32	The EBP50-moesin interaction involves a binding site regulated by direct masking on the FERM domain. Journal of Cell Science, 2004, 117, 1547-1552.	2.0	68
33	Stable and Dynamic Axes of Polarity Use Distinct Formin Isoforms in Budding Yeast. Molecular Biology of the Cell, 2004, 15, 4971-4989.	2.1	142
34	MECHANISMS OF POLARIZED GROWTH AND ORGANELLE SEGREGATION IN YEAST. Annual Review of Cell and Developmental Biology, 2004, 20, 559-591.	9.4	344
35	Polarized growth and organelle segregation in yeast. Journal of Cell Biology, 2003, 160, 811-816.	5.2	133
36	Secretory vesicle transport velocity in living cells depends on the myosin-V lever arm length. Journal of Cell Biology, 2002, 156, 35-40.	5.2	198

#	Article	IF	CITATIONS
37	Microfilaments and microtubules: the news from yeast. Current Opinion in Microbiology, 2002, 5, 564-574.	5.1	51
38	Distinct cell type-specific expression of scaffolding proteins EBP50 and E3KARP: EBP50 is generally expressed with ezrin in specific epithelia, whereas E3KARP is not. European Journal of Cell Biology, 2002, 81, 61-68.	3.6	70
39	Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nature Cell Biology, 2002, 4, 32-41.	10.3	405
40	ERM proteins and merlin: integrators at the cell cortex. Nature Reviews Molecular Cell Biology, 2002, 3, 586-599.	37.0	1,468
41	Hierarchy of Merlin and Ezrin N- and C-terminal Domain Interactions in Homo- and Heterotypic Associations and Their Relationship to Binding of Scaffolding Proteins EBP50 and E3KARP. Journal of Biological Chemistry, 2001, 276, 7621-7629.	3.4	92
42	Identification of Epi64, a Tbc/Rabgap Domain–Containing Microvillar Protein That Binds to the First PDZ Domain of Ebp50 and E3karp. Journal of Cell Biology, 2001, 153, 191-206.	5.2	72
43	Ras Regulates the Polarity of the Yeast Actin Cytoskeleton through the Stress Response Pathway. Molecular Biology of the Cell, 2001, 12, 1541-1555.	2.1	67
44	Identification of a Novel Member of the Chloride Intracellular Channel Gene Family (CLIC5) That Associates with the Actin Cytoskeleton of Placental Microvilli. Molecular Biology of the Cell, 2000, 11, 1509-1521.	2.1	147
45	Structure of the ERM Protein Moesin Reveals the FERM Domain Fold Masked by an Extended Actin Binding Tail Domain. Cell, 2000, 101, 259-270.	28.9	555
46	ERM-Merlin and EBP50 Protein Families in Plasma Membrane Organization and Function. Annual Review of Cell and Developmental Biology, 2000, 16, 113-143.	9.4	354
47	The Cooh-Terminal Domain of Myo2p, a Yeast Myosin V, Has a Direct Role in Secretory Vesicle Targeting. Journal of Cell Biology, 1999, 147, 791-808.	5.2	228
48	The cytoskeletal linker protein moesin: decreased levels in Wiskott-Aldrich syndrome platelets and identification of a cleavage pathway in normal platelets. British Journal of Haematology, 1999, 106, 216-223.	2.5	7
49	A kinase-regulated PDZ-domain interaction controls endocytic sorting of the β2-adrenergic receptor. Nature, 1999, 401, 286-290.	27.8	637
50	Moesin, the major ERM protein of lymphocytes and platelets, differs from ezrin in its insensitivity to calpain. FEBS Letters, 1999, 443, 31-36.	2.8	100
51	C-Terminal Threonine Phosphorylation Activates ERM Proteins to Link the Cell's Cortical Lipid Bilayer to the Cytoskeleton. Biochemical and Biophysical Research Communications, 1998, 253, 561-565.	2.1	129
52	Tropomyosin-containing Actin Cables Direct the Myo2p-dependent Polarized Delivery of Secretory Vesicles in Budding Yeast. Journal of Cell Biology, 1998, 143, 1931-1945.	5.2	310
53	The Carboxyl-terminal Region of EBP50 Binds to a Site in the Amino-terminal Domain of Ezrin That Is Masked in the Dormant Molecule. Journal of Biological Chemistry, 1998, 273, 18452-18458.	3.4	182
54	Identification of EBP50: A PDZ-containing Phosphoprotein that Associates with Members of the Ezrin-Radixin-Moesin Family. Journal of Cell Biology, 1997, 139, 169-179.	5.2	562

#	Article	IF	CITATIONS
55	Identification and molecular characterization of the calmodulin-binding subunit gene (CMP1) of protein phosphatase 2B from Saccharomyces cerevisiae. An alpha-factor inducible gene. FEBS Journal, 1992, 204, 713-723.	0.2	34
56	Yeast actin is relatively well behaved. FEBS Journal, 1992, 206, 949-955.	0.2	29
57	Preparation of immobilized monomeric actin and its use in the isolation of protease-free and ribonuclease-free pancreatic deoxyribonuclease I. FEBS Journal, 1989, 179, 215-219.	0.2	4
58	ATPase activity of the microvillar 110 kDa polypeptide-calmodulin complex is activated in Mg2+and inhibited in K+-EDTA by F-actin. FEBS Letters, 1987, 225, 269-272.	2.8	23
59	Caldesmon: Thin filament regulatory proteins of smooth- and non-muscle cells. Nature, 1986, 321, 726-727.	27.8	60
60	Molecular Architecture of the Microvillus Cytoskeleton. Novartis Foundation Symposium, 1983, 95, 164-179.	1.1	9
61	Immunohistochemical localization of several cytoskeletal proteins in inner ear sensory and supporting cells. Hearing Research, 1982, 7, 75-89.	2.0	184
62	Villin is a major protein of the microvillus cystoskeleton which binds both G and F actin in a calcium-dependent manner. Cell, 1980, 20, 839-847.	28.9	461