Franck Ramus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2932603/publications.pdf

Version: 2024-02-01

61984 38395 9,902 103 43 95 citations h-index g-index papers 110 110 110 6993 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Theories of developmental dyslexia: insights from a multiple case study of dyslexic adults. Brain, 2003, 126, 841-865.	7.6	1,068
2	Correlates of linguistic rhythm in the speech signal. Cognition, 1999, 73, 265-292.	2.2	878
3	Developmental dyslexia: specific phonological deficit or general sensorimotor dysfunction?. Current Opinion in Neurobiology, 2003, 13, 212-218.	4.2	602
4	What Phonological Deficit?. Quarterly Journal of Experimental Psychology, 2008, 61, 129-141.	1.1	473
5	Language Discrimination by Human Newborns and by Cotton-Top Tamarin Monkeys. Science, 2000, 288, 349-351.	12.6	434
6	Predictors of developmental dyslexia in European orthographies with varying complexity. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2013, 54, 686-694.	5 . 2	307
7	Cognitive mechanisms underlying reading and spelling development in five European orthographies. Learning and Instruction, 2014, 29, 65-77.	3.2	293
8	From genes to behavior in developmental dyslexia. Nature Neuroscience, 2006, 9, 1213-1217.	14.8	291
9	Neurobiology of dyslexia: a reinterpretation of the data. Trends in Neurosciences, 2004, 27, 720-726.	8.6	286
10	Phonological deficits in specific language impairment and developmental dyslexia: towards a multidimensional model. Brain, 2013, 136, 630-645.	7.6	263
11	The Influence of Socioeconomic Status on Children's Brain Structure. PLoS ONE, 2012, 7, e42486.	2.5	235
12	The role of sensorimotor impairments in dyslexia: a multiple case study of dyslexic children. Developmental Science, 2006, 9, 237-255.	2.4	221
13	Altered Low-Gamma Sampling in Auditory Cortex Accounts for the Three Main Facets of Dyslexia. Neuron, 2011, 72, 1080-1090.	8.1	210
14	Language identification with suprasegmental cues: A study based on speech resynthesis. Journal of the Acoustical Society of America, 1999, 105, 512-521.	1.1	208
15	The relationship between motor control and phonology in dyslexic children. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2003, 44, 712-722.	5.2	205
16	Perception and acquisition of linguistic rhythm by infants. Speech Communication, 2003, 41, 233-243.	2.8	184
17	Optical Brain Imaging Reveals General Auditory and Language-Specific Processing in Early Infant Development. Cerebral Cortex, 2011, 21, 254-261.	2.9	154
18	Developmental dyslexia: The difficulties of interpreting poor performance, and the importance of normal performance. Cognitive Neuropsychology, 2012, 29, 104-122.	1.1	154

#	Article	IF	Citations
19	Motion and Form Coherence Detection in Autistic Spectrum Disorder: Relationship to Motor Control and 2:4 Digit Ratio. Journal of Autism and Developmental Disorders, 2006, 36, 225-237.	2.7	140
20	Talk of two theories. Nature, 2001, 412, 393-394.	27.8	125
21	Enhanced perceptual processing of speech in autism. Developmental Science, 2008, 11, 109-121.	2.4	123
22	Neuroanatomy of developmental dyslexia: Pitfalls and promise. Neuroscience and Biobehavioral Reviews, 2018, 84, 434-452.	6.1	123
23	Planum temporale asymmetry in developmental dyslexia: Revisiting an old question. Human Brain Mapping, 2014, 35, 5717-5735.	3.6	119
24	Phonological skills, visual attention span, and visual stress in developmental dyslexia Developmental Psychology, 2016, 52, 1503-1516.	1.6	117
25	Outstanding questions about phonological processing in dyslexia. Dyslexia, 2001, 7, 197-216.	1.5	113
26	Neural network processing of natural language: I. Sensitivity to serial, temporal and abstract structure of language in the infant. Language and Cognitive Processes, 2000, 15, 87-127.	2.2	105
27	Neurogenetics and auditory processing in developmental dyslexia. Current Opinion in Neurobiology, 2013, 23, 37-42.	4.2	104
28	Neuroimaging sheds new light on the phonological deficit in dyslexia. Trends in Cognitive Sciences, 2014, 18, 274-275.	7.8	85
29	Genome-wide association scan identifies new variants associated with a cognitive predictor of dyslexia. Translational Psychiatry, 2019, 9, 77.	4.8	82
30	Language discrimination by newborns. Annual Review of Language Acquisition, 2002, 2, 85-115.	0.9	79
31	Genes, brain, and cognition: A roadmap for the cognitive scientist. Cognition, 2006, 101, 247-269.	2.2	78
32	Impaired auditory sampling in dyslexia: further evidence from combined fMRI and EEG. Frontiers in Human Neuroscience, 2013, 7, 454.	2.0	78
33	The Number of Genomic Copies at the 16p11.2 Locus Modulates Language, Verbal Memory, and Inhibition. Biological Psychiatry, 2016, 80, 129-139.	1.3	78
34	Exploring dyslexics' phonological deficit I: lexical vs sub-lexical and input vs output processes. Dyslexia, 2005, 11, 253-268.	1.5	76
35	The link between prosody and language skills in children with specific language impairment (SLI) and/or dyslexia. International Journal of Language and Communication Disorders, 2009, 44, 466-488.	1.5	76
36	Altered hemispheric lateralization of white matter pathways in developmental dyslexia: Evidence from spherical deconvolution tractography. Cortex, 2016, 76, 51-62.	2.4	75

#	Article	IF	CITATIONS
37	How reliable are gray matter disruptions in specific reading disability across multiple countries and languages? insights from a largeâ€scale voxelâ€based morphometry study. Human Brain Mapping, 2015, 36, 1741-1754.	3.6	67
38	A double dissociation between sensorimotor impairments and reading disability: A comparison of autistic and dyslexic children. Cognitive Neuropsychology, 2006, 23, 748-761.	1.1	64
39	Processing of vocalizations in humans and monkeys: A comparative fMRI study. NeuroImage, 2012, 62, 1376-1389.	4.2	59
40	Genetic analysis of dyslexia candidate genes in the European cross-linguistic NeuroDys cohort. European Journal of Human Genetics, 2014, 22, 675-680.	2.8	59
41	A Functionally Guided Approach to the Morphometry of Occipitotemporal Regions in Developmental Dyslexia: Evidence for Differential Effects in Boys and Girls. Journal of Neuroscience, 2013, 33, 11296-11301.	3.6	57
42	Genome-wide association study reveals new insights into the heritability and genetic correlates of developmental dyslexia. Molecular Psychiatry, 2021, 26, 3004-3017.	7.9	56
43	The role of speech rhythm in language discrimination: further tests with a non-human primate. Developmental Science, 2005, 8, 26-35.	2.4	54
44	Alterations in white matter pathways underlying phonological and morphological processing in Chinese developmental dyslexia. Developmental Cognitive Neuroscience, 2018, 31, 11-19.	4.0	51
45	Interhemispheric Differences in Auditory Processing Revealed by fMRI in Awake Rhesus Monkeys. Cerebral Cortex, 2012, 22, 838-853.	2.9	50
46	Weighing the evidence between competing theories of dyslexia. Developmental Science, 2006, 9, 265-269.	2.4	44
47	Multi-parameter machine learning approach to the neuroanatomical basis of developmental dyslexia. Human Brain Mapping, 2017, 38, 900-908.	3.6	44
48	Correlates of linguistic rhythm in the speech signal. Cognition, 2000, 75, AD3-AD30.	2.2	42
49	Exploring dyslexics' phonological deficit III: foreign speech perception and production. Dyslexia, 2010, 16, 318-340.	1.5	41
50	Belief attribution despite verbal interference. Quarterly Journal of Experimental Psychology, 2011, 64, 975-990.	1.1	41
51	Risk of early neurodevelopmental outcomes associated with prenatal exposure to the antiepileptic drugs most commonly used during pregnancy: a French nationwide population-based cohort study. BMJ Open, 2020, 10, e034829.	1.9	39
52	A universal reading network and its modulation by writing system and reading ability in French and Chinese children. ELife, 2020, 9, .	6.0	39
53	The influence of early linguistic skills and family factors on literacy acquisition in Chinese children: Follow-up from age 3 to age 11. Learning and Instruction, 2017, 49, 54-63.	3.2	37
54	Risk of early neurodevelopmental disorders associated with in utero exposure to valproate and other antiepileptic drugs: a nationwide cohort study in France. Scientific Reports, 2020, 10, 17362.	3.3	37

#	Article	IF	Citations
55	Neuroanatomical norms in the <scp>UK</scp> Biobank: The impact of allometric scaling, sex, and age. Human Brain Mapping, 2021, 42, 4623-4642.	3.6	37
56	Do developmental milestones at 4, 8, 12 and 24 months predict IQ at 5–6 years old? Results of the EDEN mother–child cohort. European Journal of Paediatric Neurology, 2017, 21, 272-279.	1.6	34
57	Emotional, behavioral and social difficulties among high-IQ children during the preschool period: Results of the EDEN mother–child cohort. Personality and Individual Differences, 2016, 94, 366-371.	2.9	33
58	Differential effects of factors influencing cognitive development at the age of 5-to-6 years. Cognitive Development, 2016, 40, 152-162.	1.3	27
59	The Effect of Older Siblings on Language Development as a Function of Age Difference and Sex. Psychological Science, 2019, 30, 1333-1343.	3.3	25
60	Does pre-testing promote better retention than post-testing?. Npj Science of Learning, 2019, 4, 15.	2.8	25
61	Sex differences in the brain are not reduced to differences in body size. Neuroscience and Biobehavioral Reviews, 2021, 130, 509-511.	6.1	24
62	Should neuroconstructivism guide developmental research?. Trends in Cognitive Sciences, 2004, 8, 100-101.	7.8	23
63	Do children with dyslexia and/or specific language impairment compensate for place assimilation? Insight into phonological grammar and representations. Cognitive Neuropsychology, 2010, 27, 563-586.	1.1	23
64	White matter network connectivity deficits in developmental dyslexia. Human Brain Mapping, 2019, 40, 505-516.	3.6	23
65	Sex differences in psychomotor development during the preschool period: A longitudinal study of the effects of environmental factors and of emotional, behavioral, and social functioning. Journal of Experimental Child Psychology, 2019, 178, 369-384.	1.4	22
66	Predicting changes in language skills between 2 and 3 years in the EDEN mother–child cohort. PeerJ, 2014, 2, e335.	2.0	22
67	Eye-tracking reveals a slowdown of social context processing during intention attribution in patients with schizophrenia. Journal of Psychiatry and Neuroscience, 2016, 41, E13-E21.	2.4	21
68	Vocabulary growth rate from preschool to schoolâ€age years is reflected in the connectivity of the arcuate fasciculus in 14â€yearâ€old children. Developmental Science, 2018, 21, e12647.	2.4	21
69	Relationship between early language skills and the development of inattention/hyperactivity symptoms during the preschool period: Results of the EDEN mother-child cohort. BMC Psychiatry, 2016, 16, 380.	2.6	20
70	Exploring dyslexics' phonological deficit II: Phonological grammar. First Language, 2016, 36, 316-337.	1.2	20
71	Neural entrainment to speech and nonspeech in dyslexia: Conceptual replication and extension of previous investigations. Cortex, 2021, 137, 160-178.	2.4	20
72	Phonological knowledge in compensation for native and non-native assimilation. Phonology and Phonetics, 2009, , 265-310.	0.4	20

#	Article	IF	CITATIONS
73	What's the point of neuropsychoanalysis?. British Journal of Psychiatry, 2013, 203, 170-171.	2.8	19
74	Developmental trajectories of motor skills during the preschool period. European Child and Adolescent Psychiatry, 2019, 28, 1461-1474.	4.7	19
75	Comorbidity and cognitive overlap between developmental dyslexia and congenital amusia. Cognitive Neuropsychology, 2019, 36, 1-17.	1.1	19
76	Is the Theory of Mind deficit observed in visual paradigms in schizophrenia explained by an impaired attention toward gaze orientation?. Schizophrenia Research, 2014, 157, 78-83.	2.0	18
77	Gaze direction detection in autism spectrum disorder. Autism, 2017, 21, 100-107.	4.1	18
78	Should there really be a â€~Dyslexia debate'?. Brain, 2014, 137, 3371-3374.	7.6	17
79	Kinematics matters: A new eye-tracking investigation of animated triangles. Quarterly Journal of Experimental Psychology, 2013, 66, 229-244.	1.1	15
80	Atypical Social Judgment and Sensitivity to Perceptual Cues in Autism Spectrum Disorders. Journal of Autism and Developmental Disorders, 2016, 46, 1574-1581.	2.7	15
81	Predictors of the IQ-achievement gap in France: A longitudinal analysis. Intelligence, 2018, 69, 104-116.	3.0	15
82	Epidemiology of reading disability: A comparison of DSM-5 and ICD-11 criteria. Scientific Studies of Reading, 2022, 26, 337-355.	2.0	15
83	Are high-IQ students more at risk of school failure?. Intelligence, 2018, 71, 32-40.	3.0	14
84	A Meta-Analytic Review of the Benefit of Spacing out Retrieval Practice Episodes on Retention. Educational Psychology Review, 2021, 33, 959-987.	8.4	14
85	Influences of the early family environment and long-term vocabulary development on the structure of white matter pathways: A longitudinal investigation. Developmental Cognitive Neuroscience, 2020, 42, 100767.	4.0	14
86	Neural dissociation of visual attention span and phonological deficits in developmental dyslexia: A hubâ€based white matter network analysis. Human Brain Mapping, 2022, 43, 5210-5219.	3.6	14
87	An eye-tracking investigation of intentional motion perception in patients with schizophrenia. Journal of Psychiatry and Neuroscience, 2015, 40, 118-125.	2.4	13
88	Perceptual Learning of Acoustic Noise by Individuals With Dyslexia. Journal of Speech, Language, and Hearing Research, 2014, 57, 1069-1077.	1.6	12
89	Maladaptive compensation of right fusiform gyrus in developmental dyslexia: A hub-based white matter network analysis. Cortex, 2021, 145, 57-66.	2.4	11
90	Comparing brain asymmetries independently of brain size. Neurolmage, 2022, 254, 119118.	4.2	11

#	Article	IF	CITATIONS
91	The epidemiology of cognitive development. Cognition, 2021, 213, 104690.	2.2	9
92	Impaired functional differentiation for categories of objects in the ventral visual stream: A case of developmental visual impairment. Neuropsychologia, 2015, 77, 52-61.	1.6	8
93	Adjusting for allometric scaling in <scp>ABIDE</scp> I challenges subcortical volume differences in autism spectrum disorder. Human Brain Mapping, 2020, 41, 4610-4629.	3. 6	8
94	Evidence for a domain-specific deficit in developmental dyslexia. Behavioral and Brain Sciences, 2002, 25, 767-768.	0.7	6
95	Quel pouvoir prédictif de la génétique et des neurosciences, et quels problèmes�. Medecine Et Droit, 2011, 2011, 51-58.	0.1	6
96	Preserved implicit mentalizing in schizophrenia despite poor explicit performance: evidence from eye tracking. Scientific Reports, 2016, 6, 34728.	3.3	6
97	Sex differences in academic achievement are modulated by evaluation type. Learning and Individual Differences, 2020, 83-84, 101935.	2.7	5
98	Neuroanatomy of dyslexia: An allometric approach. European Journal of Neuroscience, 2020, 52, 3595-3609.	2.6	5
99	General intelligence is an emerging property, not an evolutionary puzzle. Behavioral and Brain Sciences, 2017, 40, e217.	0.7	4
100	Can the Prevalence of ADHD Really be 0.3%?. Journal of Attention Disorders, 2021, 25, 1351-1351.	2.6	3
101	Papers Not in the Right Section?. Science, 2007, 317, 453-453.	12.6	0
102	[No Title]. British Journal of Psychiatry, 2013, 203, 390-391.	2.8	0
103	Les neurosciences, un épouvantail bien commode. CitÉs: Philosophie Politique Histoire, 2014, n° 60, 53-70.	0.2	0