List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2932553/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of codfish gelatin: A comparative study of fresh and salted skins and different extraction methods. Food Hydrocolloids, 2022, 124, 107238.	5.6	12
2	Combined gelatin-chondroitin sulfate hydrogels with graphene nanoparticles. Emergent Materials, 2022, 5, 755-764.	3.2	3
3	Isolation and Characterization of Polysaccharides from the Ascidian Styela clava. Polymers, 2022, 14, 16.	2.0	3
4	Kinetics of Bacterial Adaptation, Growth, and Death at Didecyldimethylammonium Chloride sub-MIC Concentrations. Frontiers in Microbiology, 2022, 13, 758237.	1.5	6
5	Characterization of Tuna Gelatin-Based Hydrogels as a Matrix for Drug Delivery. Gels, 2022, 8, 237.	2.1	14
6	Biorefinery for tuna head wastes: Production of protein hydrolysates, high-quality oils, minerals and bacterial peptones. Journal of Cleaner Production, 2022, 357, 131909.	4.6	15
7	The role of the drying method on fish oil entrapment in a fish muscle protein ̶ κ-carrageenan ̶ fish protein hydrolysate wall matrix and the properties of colloidal dispersions. Food Hydrocolloids, 2022, 131, 107799.	5.6	8
8	Improving the Lipid Profile of Black Soldier Fly (Hermetia illucens) Larvae for Marine Aquafeeds: Current State of Knowledge. Sustainability, 2022, 14, 6472.	1.6	7
9	Multifunctional PLA/Gelatin Bionanocomposites for Tailored Drug Delivery Systems. Pharmaceutics, 2022, 14, 1138.	2.0	7
10	Development of advanced phospholipid vesicles loaded with Lippia citriodora pressurized liquid extract for the treatment of gastrointestinal disorders. Food Chemistry, 2021, 337, 127746.	4.2	8
11	Ecoâ€efficiency of a marine biorefinery for valorization of cartilaginous fish biomass. Journal of Industrial Ecology, 2021, 25, 789-801.	2.8	6
12	Deciphering Structural Determinants in Chondroitin Sulfate Binding to FGF-2: Paving the Way to Enhanced Predictability of Their Biological Functions. Polymers, 2021, 13, 313.	2.0	13
13	Biogenic Calcium Phosphate from Fish Discards and By-Products. Applied Sciences (Switzerland), 2021, 11, 3387.	1.3	9
14	Characterization of Protein Hydrolysates from Fish Discards and By-Products from the North-West Spain Fishing Fleet as Potential Sources of Bioactive Peptides. Marine Drugs, 2021, 19, 338.	2.2	31
15	Sustainable Sources from Aquatic Organisms for Cosmeceuticals Ingredients. Cosmetics, 2021, 8, 48.	1.5	18
16	The Effect of Molecular Weight on the Antimicrobial Activity of Chitosan from Loligo opalescens for Food Packaging Applications. Marine Drugs, 2021, 19, 384.	2.2	11
17	Development of Chitosan-Based Surfaces to Prevent Single- and Dual-Species Biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. Molecules, 2021, 26, 4378.	1.7	11
18	Characterization of Gelatin and Hydrolysates from Valorization of Farmed Salmon Skin By-Products. Polymers, 2021, 13, 2828.	2.0	17

#	Article	IF	CITATIONS
19	Production and Physicochemical Characterization of Gelatin and Collagen Hydrolysates from Turbot Skin Waste Generated by Aquaculture Activities. Marine Drugs, 2021, 19, 491.	2.2	18
20	Valorisation of Atlantic codfish (Gadus morhua) frames from the cure-salting industry as fish protein hydrolysates with in vitro bioactive properties. LWT - Food Science and Technology, 2021, 149, 111840.	2.5	15
21	Targeting joint inflammation for osteoarthritis management through stimulus-sensitive hyaluronic acid based intra-articular hydrogels. Materials Science and Engineering C, 2021, 128, 112254.	3.8	20
22	Design of a Nasal Spray Based on Cardiospermum halicacabum Extract Loaded in Phospholipid Vesicles Enriched with Gelatin or Chondroitin Sulfate. Molecules, 2021, 26, 6670.	1.7	1
23	Extraction and Characterization of Gelatin from Skin By-Products of Seabream, Seabass and Rainbow Trout Reared in Aquaculture. International Journal of Molecular Sciences, 2021, 22, 12104.	1.8	9
24	Marine chondroitin sulfate of defined molecular weight by enzymatic depolymerization. Carbohydrate Polymers, 2020, 229, 115450.	5.1	11
25	Valorisation of fish discards assisted by enzymatic hydrolysis and microbial bioconversion: Lab and pilot plant studies and preliminary sustainability evaluation. Journal of Cleaner Production, 2020, 246, 119027.	4.6	33
26	Hyaluronic acid of tailored molecular weight by enzymatic and acid depolymerization. International Journal of Biological Macromolecules, 2020, 145, 788-794.	3.6	14
27	Bioconversion of Fish Discards through the Production of Lactic Acid Bacteria and Metabolites: Sustainable Application of Fish Peptones in Nutritive Fermentation Media. Foods, 2020, 9, 1239.	1.9	5
28	Optimal Production of Protein Hydrolysates from Monkfish By-Products: Chemical Features and Associated Biological Activities. Molecules, 2020, 25, 4068.	1.7	17
29	Optimal Recovery of Valuable Biomaterials, Chondroitin Sulfate and Bioapatites, from Central Skeleton Wastes of Blue Shark. Polymers, 2020, 12, 2613.	2.0	2
30	Optimization of the Enzymatic Protein Hydrolysis of By-Products from Seabream (Sparus aurata) and Seabass (Dicentrarchus labrax), Chemical and Functional Characterization. Foods, 2020, 9, 1503.	1.9	20
31	Production of Marine Probiotic Bacteria in a Cost-Effective Marine Media Based on Peptones Obtained from Discarded Fish By-Products. Microorganisms, 2020, 8, 1121.	1.6	10
32	Biotechnological Valorization of Food Marine Wastes: Microbial Productions on Peptones Obtained from Aquaculture By-Products. Biomolecules, 2020, 10, 1184.	1.8	16
33	Chondroitin sulfate and hydroxyapatite from Prionace glauca shark jaw: Physicochemical and structural characterization. International Journal of Biological Macromolecules, 2020, 156, 329-339.	3.6	15
34	Production, Characterization, and Bioactivity of Fish Protein Hydrolysates from Aquaculture Turbot (Scophthalmus maximus) Wastes. Biomolecules, 2020, 10, 310.	1.8	43
35	Incorporation of Lippia citriodora Microwave Extract into Total-Green Biogelatin-Phospholipid Vesicles to Improve Its Antioxidant Activity. Nanomaterials, 2020, 10, 765.	1.9	9
36	Impact of Prevalence Ratios of Chondroitin Sulfate (CS)- 4 and -6 Isomers Derived from Marine Sources in Cell Proliferation and Chondrogenic Differentiation Processes. Marine Drugs, 2020, 18, 94.	2.2	14

#	Article	IF	CITATIONS
37	By-products of the rice processing obtained by controlled debranning as substrates for the production of probiotic bacteria. Innovative Food Science and Emerging Technologies, 2019, 51, 167-176.	2.7	11

Optimal isolation and characterisation of chondroitin sulfate from rabbit fish (Chimaera) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 59702 Td (r

39	Collagen Extraction Optimization from the Skin of the Small-Spotted Catshark (S. canicula) by Response Surface Methodology. Marine Drugs, 2019, 17, 40.	2.2	46
40	Production of Valuable Compounds and Bioactive Metabolites from By-Products of Fish Discards Using Chemical Processing, Enzymatic Hydrolysis, and Bacterial Fermentation. Marine Drugs, 2019, 17, 139.	2.2	66
41	Development of bioprocesses for the integral valorisation of fish discards. Biochemical Engineering Journal, 2019, 144, 198-208.	1.8	32
42	Quantitative evaluation of sulfation position prevalence in chondroitin sulphate by Raman spectroscopy. Journal of Raman Spectroscopy, 2019, 50, 656-664.	1.2	14
43	Valorization of Aquaculture By-Products of Salmonids to Produce Enzymatic Hydrolysates: Process Optimization, Chemical Characterization and Evaluation of Bioactives. Marine Drugs, 2019, 17, 676.	2.2	33
44	What to Do with Unwanted Catches: Valorisation Options and Selection Strategies. , 2019, , 333-359.		9
45	Cationic imprinting of Pb(II) within composite networks based on bovine or fish chondroitin sulfate. Journal of Molecular Recognition, 2018, 31, e2614.	1.1	8
46	Optimization of antioxidants extraction from peanut skin to prevent oxidative processes during soybean oil storage. LWT - Food Science and Technology, 2018, 88, 1-8.	2.5	49
47	Isolation and Chemical Characterization of Chondroitin Sulfate from Cartilage By-Products of Blackmouth Catshark (Galeus melastomus). Marine Drugs, 2018, 16, 344.	2.2	40
48	An integral and sustainable valorisation strategy of squid pen by-products. Journal of Cleaner Production, 2018, 201, 207-218.	4.6	22
49	Effect of breed and finishing diet on growth performance, carcass and meat quality characteristics of Mos young hens. Spanish Journal of Agricultural Research, 2018, 16, e0402.	0.3	15
50	Glycosaminoglycans from marine sources as therapeutic agents. Biotechnology Advances, 2017, 35, 711-725.	6.0	128
51	Toxin production, growth kinetics and molecular characterization of Ostreopsis cf. ovata isolated from Todos os Santos Bay, tropical southwestern Atlantic. Toxicon, 2017, 138, 18-30.	0.8	15
52	Enhancement and inhibition effects on the corneal permeability of timolol maleate: Polymers, cyclodextrins and chelating agents. International Journal of Pharmaceutics, 2017, 529, 168-177.	2.6	30
53	Optimization of high purity chitin and chitosan production from Illex argentinus pens by a combination of enzymatic and chemical processes. Carbohydrate Polymers, 2017, 174, 262-272.	5.1	32
54	Microbial production of hyaluronic acid from agro-industrial by-products: Molasses and corn steep liquor. Biochemical Engineering Journal, 2017, 117, 181-187.	1.8	31

#	Article	IF	CITATIONS
55	<i>In vitro</i> evaluation of prebiotic properties derived from rice bran obtained by debranning technology. International Journal of Food Sciences and Nutrition, 2017, 68, 421-428.	1.3	13
56	By-products of Scyliorhinus canicula, Prionace glauca and Raja clavata: A valuable source of predominantly 6S sulfated chondroitin sulfate. Carbohydrate Polymers, 2017, 157, 31-37.	5.1	40
57	Production of Fish Protein Hydrolysates from Scyliorhinus canicula Discards with Antihypertensive and Antioxidant Activities by Enzymatic Hydrolysis and Mathematical Optimization Using Response Surface Methodology. Marine Drugs, 2017, 15, 306.	2.2	47
58	Hydrolysates of Fish Skin Collagen: An Opportunity for Valorizing Fish Industry Byproducts. Marine Drugs, 2017, 15, 131.	2.2	100
59	Production of Chitin from Penaeus vannamei By-Products to Pilot Plant Scale Using a Combination of Enzymatic and Chemical Processes and Subsequent Optimization of the Chemical Production of Chitosan by Response Surface Methodology. Marine Drugs, 2017, 15, 180.	2.2	45
60	Valorization of By-Products from Commercial Fish Species: Extraction and Chemical Properties of Skin Gelatins. Molecules, 2017, 22, 1545.	1.7	37
61	Effects of Caponization on Growth Performance, Carcass and Meat Quality of Mos Breed Capons Reared in Free-Range Production System. Annals of Animal Science, 2016, 16, 909-929.	0.6	30
62	Optimization of microwave-assisted extraction of hydrophilic and lipophilic antioxidants from a surplus tomato crop by response surface methodology. Food and Bioproducts Processing, 2016, 98, 283-298.	1.8	33
63	Antioxidant ability of potato (<i>Solanum tuberosum</i>) peel extracts to inhibit soybean oil oxidation. European Journal of Lipid Science and Technology, 2016, 118, 1891-1902.	1.0	45
64	Shrimp wastewater as a source of astaxanthin and bioactive peptides. Journal of Chemical Technology and Biotechnology, 2016, 91, 793-805.	1.6	50
65	Use of response surface methodology to determine optimum diets for Venerupis corrugata larvae: effects of ration and microalgal assemblages. Aquaculture, 2016, 452, 283-290.	1.7	6
66	Valorisation of effluents obtained from chemical and enzymatic chitin production of Illex argentinus pen by-products as nutrient supplements for various bacterial fermentations. Biochemical Engineering Journal, 2016, 116, 34-44.	1.8	21
67	Optimisation of the extraction and purification of chondroitin sulphate from head by-products of Prionace glauca by environmental friendly processes. Food Chemistry, 2016, 198, 28-35.	4.2	51
68	Cheese whey: A cost-effective alternative for hyaluronic acid production by Streptococcus zooepidemicus. Food Chemistry, 2016, 198, 54-61.	4.2	55
69	Mussel processing wastewater: a low-cost substrate for the production of astaxanthin by Xanthophyllomyces dendrorhous. Microbial Cell Factories, 2015, 14, 177.	1.9	33
70	Oxidation Stability of Pig Liver Pâté with Increasing Levels of Natural Antioxidants (Grape and Tea). Antioxidants, 2015, 4, 102-123.	2.2	22
71	Production of Chondroitin Sulphate from Head, Skeleton and Fins of Scyliorhinus canicula By-Products by Combination of Enzymatic, Chemical Precipitation and Ultrafiltration Methodologies. Marine Drugs, 2015, 13, 3287-3308.	2.2	35
72	Production of Hyaluronic Acid by Streptococcus zooepidemicus on Protein Substrates Obtained from Scyliorhinus canicula Discards. Marine Drugs, 2015, 13, 6537-6549.	2.2	34

#	Article	IF	CITATIONS
73	A Kinetic and Factorial Approach to Study the Effects of Temperature and Salinity on Growth and Toxin Production by the Dinoflagellate Alexandrium ostenfeldii from the Baltic Sea. PLoS ONE, 2015, 10, e0143021.	1.1	8
74	A new and general model to describe, characterize, quantify and classify the interactive effects of temperature and pH on the activity of enzymes. Analyst, The, 2015, 140, 3587-3602.	1.7	24
75	Recovery of Astaxanthin from Shrimp Cooking Wastewater: Optimization of Astaxanthin Extraction by Response Surface Methodology and Kinetic Studies. Food and Bioprocess Technology, 2015, 8, 371-381.	2.6	21
76	An efficient methodology for quantification of synergy and antagonism in single electron transfer antioxidant assays. Food Research International, 2015, 67, 284-298.	2.9	52
77	Crocin bleaching antioxidant assay revisited: Application to microplate to analyse antioxidant and pro-oxidant activities. Food Chemistry, 2015, 167, 299-310.	4.2	40
78	Identification of the Major ACE-Inhibitory Peptides Produced by Enzymatic Hydrolysis of a Protein Concentrate from Cuttlefish Wastewater. Marine Drugs, 2014, 12, 1390-1405.	2.2	34
79	Toxicity of spill-treating agents and oil to sea urchin embryos. Science of the Total Environment, 2014, 472, 302-308.	3.9	18
80	Analytical criteria to quantify and compare the antioxidant and pro-oxidant capacity in competition assays: The bell protection function. Food Research International, 2014, 60, 48-58.	2.9	1
81	Inhibition of selected bacterial growth by three hydrocarbons: Mathematical evaluation of toxicity using a toxicodynamic equation. Chemosphere, 2014, 112, 56-61.	4.2	14
82	A Critical Point: The Problems Associated with the Variety of Criteria To Quantify the Antioxidant Capacity. Journal of Agricultural and Food Chemistry, 2014, 62, 5472-5484.	2.4	12
83	Modeling of chemical inhibition from amyloid protein aggregation kinetics. BMC Pharmacology & Toxicology, 2014, 15, 9.	1.0	8
84	Toxicity of four spill-treating agents on bacterial growth and sea urchin embryogenesis. Chemosphere, 2014, 104, 57-62.	4.2	3
85	Growth performance, carcass and meat quality of the Celta pig crossbred with Duroc and Landrance genotypes. Meat Science, 2014, 96, 195-202.	2.7	83
86	Thermal resistance of <i>Salmonella enterica, Escherichia coli</i> and <i>Staphylococcus aureus</i> isolated from vegetable feed ingredients. Journal of the Science of Food and Agriculture, 2014, 94, 2274-2281.	1.7	18
87	In vitro determination of the lipophilic and hydrophilic antioxidant capacity of unroasted coffee bean extracts and their synergistic and antagonistic effects. Food Research International, 2014, 62, 1183-1196.	2.9	19
88	Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology. Food Chemistry, 2014, 165, 290-299.	4.2	138
89	Quantification, characterization and description of synergy and antagonism in the antioxidant response. Food Research International, 2014, 60, 218-229.	2.9	21
90	Amylase production by <i>Aspergillus oryzae</i> in a solidâ€state bioreactor with fedâ€batch operation using mussel processing wastewaters as feeding medium. Journal of Chemical Technology and Biotechnology, 2013, 88, 226-236.	1.6	10

#	Article	IF	CITATIONS
91	Effects of spill-treating agents on growth kinetics of marine microalgae. Journal of Hazardous Materials, 2013, 263, 374-381.	6.5	13
92	A new microplate procedure for simultaneous assessment of lipophilic and hydrophilic antioxidants and pro-oxidants, using crocin and β-carotene bleaching methods in a single combined assay: Tea extracts as a case study. Food Research International, 2013, 53, 836-846.	2.9	22
93	Inhibition kinetics of lipid oxidation of model foods by using antioxidant extract of fermented soybeans. Food Chemistry, 2013, 139, 837-844.	4.2	29
94	Optimization of Antimicrobial Combined Effect of Organic Acids and Temperature on Foodborne <i>Salmonella</i> and <i>Escherichia coli</i> in Cattle Feed by Response Surface Methodology. Foodborne Pathogens and Disease, 2013, 10, 1030-1036.	0.8	10
95	Effect of cross breeding and amount of finishing diet on growth parameters, carcass and meat composition of foals slaughtered at 15months of age. Meat Science, 2013, 93, 547-556.	2.7	54
96	Toxicity of binary mixtures of oil fractions to sea urchin embryos. Journal of Hazardous Materials, 2013, 263, 431-440.	6.5	8
97	Chondroitin Sulfate, Hyaluronic Acid and Chitin/Chitosan Production Using Marine Waste Sources: Characteristics, Applications and Eco-Friendly Processes: A Review. Marine Drugs, 2013, 11, 747-774.	2.2	198
98	Production of antihypertensive and antioxidant activities by enzymatic hydrolysis of protein concentrates recovered by ultrafiltration from cuttlefish processing wastewaters. Biochemical Engineering Journal, 2013, 76, 43-54.	1.8	59
99	Modeling Real-Time PCR Kinetics: Richards Reparametrized Equation for Quantitative Estimation of European Hake (Merluccius merluccius). Journal of Agricultural and Food Chemistry, 2013, 61, 3488-3493.	2.4	4
100	Development of a bivariate mathematical model to characterize simultaneously the dose-time-responses of pro-oxidant agents. , 2013, , .		0
101	Carcass morphology and meat quality from roosters slaughtered at eight months affected by genotype and finishing feeding. Spanish Journal of Agricultural Research, 2013, 11, 382.	0.3	18
102	Breed effect between Mos rooster (Galician indigenous breed) and Sasso T-44 line and finishing feed effect of commercial fodder or corn. Poultry Science, 2012, 91, 487-498.	1.5	38
103	Optimization of extraction and purification process of hyaluronic acid from fish eyeball. Food and Bioproducts Processing, 2012, 90, 491-498.	1.8	80
104	Evaluation of non-linear equations to model different animal growths with mono and bisigmoid profiles. Journal of Theoretical Biology, 2012, 314, 95-105.	0.8	35
105	Comparison of growth performance, carcass components, and meat quality between Mos rooster (Galician indigenous breed) and Sasso T-44 line slaughtered at 10 months. Poultry Science, 2012, 91, 1227-1239.	1.5	45
106	β-Carotene Assay Revisited. Application To Characterize and Quantify Antioxidant and Prooxidant Activities in a Microplate. Journal of Agricultural and Food Chemistry, 2012, 60, 8983-8993.	2.4	71
107	Comparison of several mathematical models for describing the joint effect of temperature and ph on glucanex activity. Biotechnology Progress, 2012, 28, 372-381.	1.3	22
108	INTERACTIVE EFFECTS OF SALINITY AND TEMPERATURE ON PLANOZYGOTE AND CYST FORMATION OF <i>ALEXANDRIUM MINUTUM</i> (DINOPHYCEAE) IN CULTURE ¹ . Journal of Phycology, 2011, 47, 13-24.	1.0	43

#	Article	IF	CITATIONS
109	Effects of three heavy metals on the bacteria growth kinetics: a bivariate model for toxicological assessment. Applied Microbiology and Biotechnology, 2011, 90, 1095-1109.	1.7	31
110	Preparation of marine silage of swordfish, ray and shark visceral waste by lactic acid bacteria. Journal of Food Engineering, 2011, 103, 442-448.	2.7	19
111	Dose–response modelling with two agents: Application to the bioassay of oil and shoreline cleaning agents. Journal of Hazardous Materials, 2011, 185, 807-817.	6.5	26
112	Evaluation of toxic effects of several carboxylic acids on bacterial growth by toxicodynamic modelling. Microbial Cell Factories, 2011, 10, 100.	1.9	35
113	Hydrolysis optimization of mannan, curdlan and cell walls from Endomyces fibuliger grown in mussel processing wastewaters. Process Biochemistry, 2011, 46, 1579-1588.	1.8	21
114	Acute Toxicity of a Shoreline Cleaner, CytoSol, Mixed With Oil and Ecological Risk Assessment of its Use on the Galician Coast. Archives of Environmental Contamination and Toxicology, 2010, 59, 407-416.	2.1	21
115	Biphasic toxicodynamic features of some antimicrobial agents on microbial growth: a dynamic mathematical model and its implications on hormesis. BMC Microbiology, 2010, 10, 220.	1.3	14
116	Preparation of highly purified chondroitin sulphate from skate (Raja clavata) cartilage by-products. Process optimization including a new procedure of alkaline hydroalcoholic hydrolysis. Biochemical Engineering Journal, 2010, 49, 126-132.	1.8	57
117	Bio-silage of mussel work-processing wastes by lactobacilli on semi-solid culture. Journal of Food Engineering, 2010, 97, 355-359.	2.7	4
118	Enhancement glucose oxidase production by solid-state fermentation of Aspergillus niger on polyurethane foams using mussel processing wastewaters. Enzyme and Microbial Technology, 2010, 46, 21-27.	1.6	15
119	Optimisation of antioxidants extraction from soybeans fermented by Aspergillus oryzae. Food Chemistry, 2010, 118, 731-739.	4.2	40
120	Hyaluronic acid production by Streptococcus zooepidemicus in marine by-products media from mussel processing wastewaters and tuna peptone viscera. Microbial Cell Factories, 2010, 9, 46.	1.9	69
121	Mathematical Model for the Characterization and Objective Comparison of Antioxidant Activities. Journal of Agricultural and Food Chemistry, 2010, 58, 1622-1629.	2.4	21
122	Recovery of Proteolytic and Collagenolytic Activities from Viscera By-products of Rayfish (Raja) Tj ETQq0 0 0 rgB1	/Qverlock	2 10 Tf 50 22
123	Effect of storage temperature and media composition on the survivability of Bifidobacterium breve NCIMB 702257 in a malt hydrolisate. International Journal of Food Microbiology, 2009, 133, 14-21.	2.1	16
124	Modelling and validation of Lactobacillus plantarum fermentations in cereal-based media with different sugar concentrations and buffering capacities. Biochemical Engineering Journal, 2009, 44, 96-105.	1.8	48
125	In Vitro Fermentation of Oat Bran Obtained by Debranning with a Mixed Culture of Human Fecal Bacteria. Current Microbiology, 2009, 58, 338-342.	1.0	57

High production of hyaluronic and lactic acids by Streptococcus zooepidemicus in fed-batch culture126using commercial and marine peptones from fishing by-products. Biochemical Engineering Journal,1.8452009, 44, 125-130.1.845

#	Article	IF	CITATIONS
127	Mathematical Modeling of the Development of Antioxidant Activity in Soybeans Fermented with Aspergillus oryzae and Aspergillus awamori in the Solid State. Journal of Agricultural and Food Chemistry, 2009, 57, 540-544.	2.4	15
128	Mathematical description of yessotoxin production by Protoceratium reticulatum in culture. Harmful Algae, 2009, 8, 730-735.	2.2	6
129	Effect of finishing and ageing time on quality attributes of loin from the meat of Holstein–Fresian cull cows. Meat Science, 2009, 83, 484-491.	2.7	67
130	Controlled germination to enhance the functional properties of rice. Process Biochemistry, 2008, 43, 1377-1382.	1.8	50
131	Unstructured mathematical model for biomass, lactic acid and bacteriocin production by lactic acid bacteria in batch fermentation. Journal of Chemical Technology and Biotechnology, 2008, 83, 91-96.	1.6	65
132	Fermentability of whole oat flour, PeriTec flour and bran by Lactobacillus plantarum. Journal of Food Engineering, 2008, 89, 246-249.	2.7	47
133	Alcoholic chestnut fermentation in mixed culture. Compatibility criteria between Aspergillus oryzae and Saccharomyces cerevisiae strains. Bioresource Technology, 2008, 99, 7255-7263.	4.8	14
134	Enzymatic hydrolysates from food wastewater as a source of peptones for lactic acid bacteria productions. Enzyme and Microbial Technology, 2008, 43, 66-72.	1.6	33
135	Enzymatic digestion and in vitro fermentation of oat fractions by human lactobacillus strains. Enzyme and Microbial Technology, 2008, 43, 355-361.	1.6	31
136	Kinetics of daidzin and genistin transformations and water absorption during soybean soaking at different temperatures. Food Chemistry, 2008, 111, 13-19.	4.2	27
137	Mathematical tools for objective comparison of microbial cultures. Biochemical Engineering Journal, 2008, 39, 276-287.	1.8	48
138	Joint effect of nitrogen and phosphorous on glucose oxidase production by Aspergillus niger: Discussion of an experimental design with a risk of co-linearity. Biochemical Engineering Journal, 2008, 40, 54-63.	1.8	5
139	Growth and metabolic features of lactic acid bacteria in media with hydrolysed fish viscera. An approach to bio-silage of fishing by-products. Bioresource Technology, 2008, 99, 6246-6257.	4.8	47
140	Evaluation of the fermentability of oat fractions obtained by debranning using lactic acid bacteria. Journal of Applied Microbiology, 2008, 105, 1227-1237.	1.4	32
141	Proposal for a simple and sensitive haemolytic assay for palytoxin. Harmful Algae, 2008, 7, 415-429.	2.2	57
142	Mouse bioassay for palytoxin. Specific symptoms and dose-response against dose–death time relationships. Food and Chemical Toxicology, 2008, 46, 2639-2647.	1.8	56
143	The notion of hormesis and the dose–response theory: A unified approach. Journal of Theoretical Biology, 2007, 244, 489-499.	0.8	34
144	Study of the effect of temperature, irradiance and salinity on growth and yessotoxin production by the dinoflagellate Protoceratium reticulatum in culture by using a kinetic and factorial approach. Marine Environmental Research, 2006, 62, 286-300.	1.1	35

#	Article	IF	CITATIONS
145	Preliminary tests on nisin and pediocin production using waste protein sources. Bioresource Technology, 2006, 97, 605-613.	4.8	42
146	Proteases production by two Vibrio species on residuals marine media. Journal of Industrial Microbiology and Biotechnology, 2006, 33, 661-668.	1.4	30
147	Bacteriocin production and pH gradient. Enzyme and Microbial Technology, 2005, 37, 54-67.	1.6	19
148	Effects of Aeration on Growth and on Production of Bacteriocins and Other Metabolites in Cultures of Eight Strains of Lactic Acid Bacteria. Applied Biochemistry and Biotechnology, 2005, 127, 111-124.	1.4	9
149	Two mathematical models for the correction of carbohydrate and protein interference in the determination of uronic acids by the <i>m</i> â€hydroxydiphenyl method. Biotechnology and Applied Biochemistry, 2005, 41, 209-216.	1.4	20
150	Stimulation of Bacteriocin Production by Dialyzed Culture Media from Different Lactic Acid Bacteria. Current Microbiology, 2005, 50, 208-211.	1.0	5
151	Effects of lactic acid bacteria cultures on pathogenic microbiota from fish. Aquaculture, 2005, 245, 149-161.	1.7	124
152	A model for experimental infections with Vibrio (Listonella) anguillarum in first feeding turbot (Scophthalmus maximus L.) larvae under hatchery conditions. Aquaculture, 2005, 250, 232-243.	1.7	41
153	Pediocin production byPediococcus acidilacticiin solid state culture on a waste medium: Process simulation and experimental results. Biotechnology and Bioengineering, 2004, 85, 676-682.	1.7	18
154	The role of amino acids in nisin and pediocin production by two lactic acid bacteria. Enzyme and Microbial Technology, 2004, 34, 319-325.	1.6	36
155	A mathematical model for glucose oxidase kinetics, including inhibitory, deactivant and diffusional effects, and their interactions. Enzyme and Microbial Technology, 2004, 34, 513-522.	1.6	34
156	A new marine medium. Enzyme and Microbial Technology, 2004, 35, 385-392.	1.6	11
157	Enhancement of rotifer (Brachionus plicatilis) growth by using terrestrial lactic acid bacteria. Aquaculture, 2004, 240, 313-329.	1.7	77
158	Peptones from autohydrolysed fish viscera for nisin and pediocin production. Journal of Biotechnology, 2004, 112, 299-311.	1.9	59
159	A new marine mediumUse of different fish peptones and comparative study of the growth of selected species of marine bacteria. Enzyme and Microbial Technology, 2004, 35, 385-392.	1.6	39
160	Survival of Lactic Acid Bacteria in Seawater: A Factorial Study. Current Microbiology, 2003, 47, 508-13.	1.0	11
161	Substrate inhibition of Pediococcus acidilactici by glucose on a waste medium. Simulations and experimental results. Letters in Applied Microbiology, 2003, 37, 365-369.	1.0	18
162	Dose–response relationships: an overview, a generative model and its application to the verification of descriptive models. Enzyme and Microbial Technology, 2002, 31, 439-455.	1.6	67

#	Article	IF	CITATIONS
163	An empirical model for describing the effects of nitrogen sources on nisin production. Letters in Applied Microbiology, 2001, 33, 425-429.	1.0	25
164	Enzymatic purification of glucomannan from Amorphophallus oncophyllus using A-Amylase. Bioscience Journal, 0, , 277-288.	0.4	6
165	Biocompatibility enhancement of PLA by the generation of bionanocomposites with fish collagen derivatives. Emergent Materials, 0, , 1.	3.2	2