
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2931641/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Respiratory Monitoring by Ultrafast Humidity Sensors with Nanomaterials: A Review. Sensors, 2022, 22, 1251.	3.8	29
2	Preliminary comparison of respiratory signals using acceleration on neck and humidity in exhaled air. Microsystem Technologies, 2021, 27, 1-9.	2.0	5
3	Detachable expansion fit ultrasonic head with multiple dovetail structures. Microsystem Technologies, 2021, 27, 2189-2202.	2.0	1
4	Magnetic Nanoparticles and Alternating Magnetic Field for Cancer Therapy. Fundamental Biomedical Technologies, 2021, , 165-179.	0.2	1
5	Nonporous Inorganic Nanoparticle-Based Humidity Sensor: Evaluation of Humidity Hysteresis and Response Time. Sensors, 2020, 20, 3858.	3.8	20
6	Effect of Agitation Method on the Nanosized Degradation of Polystyrene Microplastics Dispersed in Water. ACS Omega, 2020, 5, 3218-3227.	3.5	23
7	Capillary-condensed water in nonporous nanoparticle films evaluated by impedance analysis for nanoparticle devices. Nanotechnology, 2020, 31, 455701.	2.6	8
8	Biodegradability of Disulfide-Organosilica Nanoparticles Evaluated by Soft X-ray Photoelectron Spectroscopy: Cancer Therapy Implications. ACS Applied Nano Materials, 2019, 2, 479-488.	5.0	39
9	Thermal and ultrasonic bonding between planar polyethylene terephthalate, acrylonitrile butadiene styrene, and polycarbonate substrates. International Journal of Adhesion and Adhesives, 2018, 84, 394-405.	2.9	4
10	Surface patterning of protein matrix basement by thermal imprinting. Microsystem Technologies, 2017, 23, 1309-1318.	2.0	0
11	Thermal bonding of polyimide to form sealed microchannels. Japanese Journal of Applied Physics, 2017, 56, 06GM04.	1.5	6
12	Comparative evaluation of detachable mold fixing methods aimed at low energy loss for ultrasonic nanoimprint lithography. Microsystem Technologies, 2017, 23, 2707-2717.	2.0	4
13	Influence of residual layer on cross-sectional shape of thermal-reflowed photoresist structures. Microsystem Technologies, 2016, 22, 329-336.	2.0	2
14	Relationship between aspect ratio and narrowing of reflowed photoresist structures. Japanese Journal of Applied Physics, 2015, 54, 06FM01.	1.5	2
15	Performance of SU-8 Membrane Suitable for Deep X-Ray Grayscale Lithography. Micromachines, 2015, 6, 252-265.	2.9	14
16	Application of Ni-P Alloys to A Mold Material for Thermal Imprinting on Pyrex Glass. , 2015, , .		0
17	Removal of drawing traces of grayscale laser lithography by reflow process. Microelectronic Engineering, 2015, 143, 15-20.	2.4	1
18	Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy. Advanced Drug Delivery Reviews, 2015, 95, 40-49.	13.7	228

#	Article	IF	CITATIONS
19	Formation of metal nanostructures by high-temperature imprinting. Microsystem Technologies, 2014, 20, 1103-1109.	2.0	10
20	Immersion effect of fluoride liquid into cavities of negative mold in thermal imprint. Microsystem Technologies, 2013, 19, 599-608.	2.0	1
21	Effect of buffer materials on thermal imprint on plastic optical fiber. Microsystem Technologies, 2013, 19, 325-333.	2.0	1
22	High-speed imprinting on plastic optical fibers using cylindrical mold with hybrid microstructures. Microelectronic Engineering, 2013, 110, 156-162.	2.4	6
23	Fabrication of glass-like carbon molds to imprint on glass materials by MEMS processing technologies. Microsystem Technologies, 2013, 19, 315-323.	2.0	9
24	Uniform Thermal Nanoimprinting at Low Pressure by Improved Heat Transfer Using Hydrofluoroethers. Japanese Journal of Applied Physics, 2013, 52, 06CJ02.	1.5	2
25	High-speed Continuous Micro Pattern Fabrication on Fibers for Large-area Devices. IEEJ Transactions on Sensors and Micromachines, 2013, 133, 112-117.	0.1	Ο
26	Application and Processing Method of Amorphous Materials to Molds for Thermal Imprinting. Journal of the Japan Society for Precision Engineering, 2013, 79, 292-296.	0.1	0
27	Patterning of Spiral Structure on Optical Fiber by Focused-Ion-Beam Etching. Japanese Journal of Applied Physics, 2012, 51, 06FB01.	1.5	2
28	Fast and continuous patterning on the surface of plastic fiber by using thermal roller imprint. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, 06FB01.	1.2	1
29	Control of inclination angle of glass-like carbon mold by defocus UV exposure on Si-containing photoresist. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, 06FB12.	1.2	1
30	Immersion nanoimprint lithography using perfluoroalkyl liquid. Microelectronic Engineering, 2012, 97, 43-47.	2.4	1
31	Reel-to-reel imprint system to form weaving guides on fibers. Microelectronic Engineering, 2012, 98, 171-175.	2.4	6
32	Continuous Forming of Weaving Guides Using a Reel-to-reel Thermal Roller Imprint. IEEJ Transactions on Sensors and Micromachines, 2012, 132, 37-41.	0.1	3
33	Patterning of Spiral Structure on Optical Fiber by Focused-Ion-Beam Etching. Japanese Journal of Applied Physics, 2012, 51, 06FB01.	1.5	0
34	Effect of Dropping Hydrofluoroether in Thermal Nanoimprint on Polycarbonate. Japanese Journal of Applied Physics, 2011, 50, 06GK05.	1.5	2
35	Development of reel-to-reel process system for roller-imprint on plastic fibers. Microelectronic Engineering, 2011, 88, 2059-2062.	2.4	6
36	Soft patterning on cylindrical surface of plastic optical fiber. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, .	1.2	3

#	Article	IF	CITATIONS
37	A Sliding-press-type Reel-to-reel Thermal Imprint System for Fiber Substrates. IEEJ Transactions on Sensors and Micromachines, 2011, 131, 240-245.	0.1	3
38	Effect of Dropping Hydrofluoroether in Thermal Nanoimprint on Polycarbonate. Japanese Journal of Applied Physics, 2011, 50, 06GK05.	1.5	1
39	3D UV-microreplication using cylindrical PDMS mold. Microsystem Technologies, 2010, 16, 1399-1411.	2.0	7
40	Resist-less patterning on SiO2 by combination of X-ray exposure and vapor HF etching. Microsystem Technologies, 2010, 16, 1339-1346.	2.0	2
41	Inclination of mold pattern's sidewalls by combined technique with photolithography at defocus-positions and electroforming. Microsystem Technologies, 2010, 16, 1323-1330.	2.0	15
42	Guide structure with pole arrays imprinted on nylon fiber. Microelectronic Engineering, 2010, 87, 922-926.	2.4	8
43	Rapid patterning of spin-on-glass using ultrasonic nanoimprint. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C6M114-C6M121.	1.2	1
44	Imprinting of guide structure to weave nylon fibers. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 706-712.	2.1	8
45	Ultrasonic Nanoimprinting in Organic Spin-on-Glass-Coated Si Substrates. Japanese Journal of Applied Physics, 2010, 49, 06GL09.	1.5	6
46	Frequency and amplitude dependences of molding accuracy in ultrasonic nanoimprint technology. Journal of Micromechanics and Microengineering, 2009, 19, 125026.	2.6	18
47	Thermal roller imprint on surface of Teflon perfluoroalkoxy inlet tube. Journal of Vacuum Science & Technology B, 2009, 27, 2814.	1.3	10
48	Development of Ni–P-Plated Inconel Alloy Mold for Imprinting on Pyrex Glass. Japanese Journal of Applied Physics, 2009, 48, 06FH06.	1.5	10
49	Thermal imprinting on quartz fiber using glasslike carbon mold. Journal of Vacuum Science & Technology B, 2009, 27, 2820.	1.3	9
50	Demonstration of fabricating a needle array by the combination of x-ray grayscale mask with the lithografie, galvanoformung, abformung process. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2009, 8, 033010.	0.9	6
51	Development of a 3â€dimensional LIGA process and application to fabricate a spiral microcoil. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 2009, 166, 43-51.	0.4	1
52	Imprinting a needle array on a polycarbonate substrate. International Journal of Precision Engineering and Manufacturing, 2009, 10, 79-83.	2.2	5
53	3D replication using PDMS mold for microcoil. Microelectronic Engineering, 2009, 86, 920-924.	2.4	13
54	Ultrasonic nanoimprint on engineering plastics. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2009, 27, 785-792.	2.1	20

#	Article	IF	CITATIONS
55	Effect of applying ultrasonic vibration in thermal nanoimprint lithography. Microsystem Technologies, 2008, 14, 1325-1333.	2.0	23
56	A Si stencil mask for deep X-ray lithography fabricated by MEMS technology. Microsystem Technologies, 2008, 14, 1335-1342.	2.0	4
57	Micro lens imprinted on Pyrex glass by using amorphous Ni–P alloy mold. Microelectronic Engineering, 2008, 85, 873-876.	2.4	14
58	Fabrication and evaluation of a grayscale mask for x-ray lithography using MEMS technology. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2008, 7, 013009.	0.9	4
59	Ultrasonic Nanoimprint on Poly(ethylene terephthalate) at Room Temperature. Japanese Journal of Applied Physics, 2008, 47, 5178-5184.	1.5	22
60	Fabrication of a needle array using a Si gray mask for x-ray lithography. Journal of Vacuum Science & Technology B, 2007, 25, 2196.	1.3	7
61	Nanoimprint Lithography Combined with Ultrasonic Vibration on Polycarbonate. Japanese Journal of Applied Physics, 2007, 46, 6355-6362.	1.5	19
62	Glass nanoimprint using amorphous Ni–P mold etched by focused-ion beam. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 1025-1028.	2.1	9
63	Ultrasonic nanoimprint on engineering plastics at room temperature. , 2007, , .		1
64	Three-dimensional X-ray lithography using a silicon mask with inclined absorbers. , 2007, , .		1
65	A novel fabrication method of needle array combined X-ray gray mask with LIGA process. , 2007, , .		1
66	Fabrication of Three Dimensional X-ray Mask using MEMS Technology. , 2007, , .		0
67	Development of ultrasonic micro hot embossing technology. Microelectronic Engineering, 2007, 84, 1282-1287.	2.4	89
68	Design of solenoidal electromagnetic microactuator utilizing 3D X-ray lithography and metalization. Microsystem Technologies, 2007, 13, 547-550.	2.0	16
69	Development of a 3-Dimensional LIGA Process and Application to Fabricate a Spiral Microcoil. IEEJ Transactions on Electronics, Information and Systems, 2007, 127, 160-166.	0.2	2
70	Fabrication of X-Ray Lithography Masks Utilizing MEMS Technology. IEEJ Transactions on Electronics, Information and Systems, 2007, 127, 167-173.	0.2	0
71	Recent development of micropore optics using MEMS technologies. , 2006, , .		1
72	Fabrication of a Si stencil mask for the X-ray lithography using a dry etching technique. Journal of Physics: Conference Series, 2006, 34, 859-864.	0.4	9

#	Article	IF	CITATIONS
73	Precise Micro Pattern Replication by Hot Embossing. JSME International Journal Series A-Solid Mechanics and Material Engineering, 2006, 49, 69-73.	0.4	8
74	Fabrication of Spiral Micro-Coil Utilizing LIGA Process. JSME International Journal Series A-Solid Mechanics and Material Engineering, 2006, 49, 74-78.	0.4	8
75	Fabrication of a spiral microcoil using a 3D-LIGA process. Microsystem Technologies, 2006, 13, 393-402.	2.0	18
76	Development of precision transfer technology of atmospheric hot embossing by ultrasonic vibration. Microsystem Technologies, 2006, 13, 385-391.	2.0	41
77	Development of Three Dimensional LIGA Process to Fabricate Spiral Microcoil. Japanese Journal of Applied Physics, 2005, 44, 5749-5754.	1.5	38
78	Precise Micro Pattern Replication Using Hot Embossing. The Proceedings of the Machine Design and Tribology Division Meeting in JSME, 2004, 2004.4, 69-70.	0.0	0
79	Fabrication of Mold Master for Spiral Microcoil Utilizing X-Ray Lithography of Synchrotron Radiation. Japanese Journal of Applied Physics, 2004, 43, 4036-4040.	1.5	26
80	Microfabrication by hot embossing and injection molding at LASTI. Microsystem Technologies, 2004, 10, 682-688.	2.0	32
81	Development of worm injection molding for LIGA process. The Proceedings of the Machine Design and Tribology Division Meeting in JSME, 2004, 2004.4, 67-68.	0.0	0
82	Large Area Microfabrication System using Synchrotron Radiation. The Proceedings of the Machine Design and Tribology Division Meeting in JSME, 2004, 2004.4, 73-74.	0.0	2
83	Development of Ultrasonic Vibration Hot Embossing Replication Technique. The Proceedings of the Machine Design and Tribology Division Meeting in JSME, 2004, 2004.4, 71-72.	0.0	0
84	Fabrication of X-ray masks and applications for optical switch molding. Sensors and Actuators A: Physical, 2003, 108, 224-229.	4.1	5
85	Effects of Synchrotron Radiation Spectrum Energy on Polymethyl Methacrylate Photosensitivity to Deep X-ray Lithography. Japanese Journal of Applied Physics, 2003, 42, 3807-3810.	1.5	7
86	Fabrication of 3D micro coil using warm injection molding. The Proceedings of the Materials and Processing Conference, 2003, 2003.11, 287-288.	0.0	0
87	An approach to three-dimensional microstructure fabrication utilizing hard x-ray lithography of synchrotron radiation. Review of Scientific Instruments, 2002, 73, 1376-1378.	1.3	5
88	Optimization of Au mask fabrication processes for LIGA applications. , 2002, , .		2
89	Quasi-3D microstructure fabrication technique utilizing hard X-ray lithography of synchrotron radiation. Microsystem Technologies, 2002, 9, 36-40.	2.0	10
90	Nanostructure formation on Si (111) surface assisted by synchrotron radiation illumination. Journal of Electron Spectroscopy and Related Phenomena, 2001, 119, 241-246.	1.7	0

#	Article	IF	CITATIONS
91	Beam line BL11 for LIGA process at the NewSUBARU. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 467-468, 741-744.	1.6	21
92	Design and construction of UVSOR-BL4A2 beam line for nano-structure processing. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 467-468, 1279-1281.	1.6	0
93	424 3-dimentional microstructures produced by the combination of high aspect ratio processing using synchrotron radiation and anisotropic etching. The Proceedings of the Materials and Processing Conference, 2001, 2001.9, 369-370.	0.0	0
94	425 Fabrication of Microstructures with tilted sidewall using rotation of an X-ray mask. The Proceedings of the Materials and Processing Conference, 2001, 2001.9, 371-372.	0.0	0
95	430 Examination of the 3-D micro processing by X-ray mask with optical intensity variation. The Proceedings of the Materials and Processing Conference, 2001, 2001.9, 381-382.	0.0	Ο
96	Scanning tunneling microscopy study of Si(111) surface morphology after removal of SiO2 by synchrotron radiation illumination. Applied Physics Letters, 2000, 76, 1392-1394.	3.3	18
97	Scanning tunneling microscopy study of surface morphology of Si(111) after synchrotron radiation stimulated desorption of SiO2. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 1153-1157.	2.1	8
98	Construction of the multilayered-mirror monochromator beam line for the study of synchrotron radiation stimulated process. Review of Scientific Instruments, 1999, 70, 2601-2605.	1.3	3
99	Quantum yield and carbon contamination in thin-film deposition reaction by core-electron excitations. Applied Organometallic Chemistry, 1999, 13, 195-200.	3.5	1
100	Energy and polarization control in synchrotron-radiation-stimulated nanoprocess. , 1999, 3773, 340.		0
101	Design and performance of a multilayered mirror monochromator in the low-energy region of the VUV. Journal of Synchrotron Radiation, 1998, 5, 714-715.	2.4	3
102	Analysis of single-side shearing by using punch with high slenderness ratio. International Journal of Machine Tools and Manufacture, 1997, 37, 1109-1122.	13.4	0
103	Effect of Applying Ultrasonic Vibration in Hot Embossing and Nanoimprint. , 0, , .		2
104	Monodispersed sodium hyaluronate microcapsules for transdermal drug delivery systems. Materials Advances, 0, , .	5.4	5