Qihua Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2930528/publications.pdf

Version: 2024-02-01

125	6,545	49	76
papers	citations	h-index	g-index
133	133 docs citations	133	7733
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	Nitrogen-doped carbon nanotubes derived from Zn–Fe-ZIF nanospheres and their application as efficient oxygen reduction electrocatalysts with in situ generated iron species. Chemical Science, 2013, 4, 2941.	7.4	282
2	A Yolk–Shell Nanoreactor with a Basic Core and an Acidic Shell for Cascade Reactions. Angewandte Chemie - International Edition, 2012, 51, 9164-9168.	13.8	277
3	Functionalized periodic mesoporous organosilicas for catalysis. Journal of Materials Chemistry, 2009, 19, 1945.	6.7	262
4	Direct Synthesis of Alâ^'SBA-15 Mesoporous Materials via Hydrolysis-Controlled Approach. Journal of Physical Chemistry B, 2004, 108, 9739-9744.	2.6	236
5	Enhancement of the Performance of a Platinum Nanocatalyst Confined within Carbon Nanotubes for Asymmetric Hydrogenation. Angewandte Chemie - International Edition, 2011, 50, 4913-4917.	13.8	201
6	Covalent organic frameworks with high quantum efficiency in sacrificial photocatalytic hydrogen evolution. Nature Communications, 2022, 13, 2357.	12.8	156
7	Spinel ZnMn2O4 nanoplate assemblies fabricated via "escape-by-crafty-scheme―strategy. Journal of Materials Chemistry, 2012, 22, 13328.	6.7	151
8	N-doped porous carbons with exceptionally high CO2 selectivity for CO2 capture. Carbon, 2017, 114, 473-481.	10.3	148
9	Improving Catalytic Hydrogenation Performance of Pd Nanoparticles by Electronic Modulation Using Phosphine Ligands. ACS Catalysis, 2018, 8, 6476-6485.	11.2	148
10	Organosilane-Assisted Transformation from Core–Shell to Yolk–Shell Nanocomposites. Chemistry of Materials, 2011, 23, 3676-3684.	6.7	137
11	Dualâ€Functional Atomic Zinc Decorated Hollow Carbon Nanoreactors for Kinetically Accelerated Polysulfides Conversion and Dendrite Free Lithium Sulfur Batteries. Advanced Energy Materials, 2020, 10, 2002271.	19.5	137
12	Assembly of ZIF nanostructures around free Pt nanoparticles: efficient size-selective catalysts for hydrogenation of alkenes under mild conditions. Chemical Communications, 2013, 49, 3330.	4.1	131
13	Polystyrene sulphonic acid resins with enhanced acid strength via macromolecular self-assembly within confined nanospace. Nature Communications, 2014, 5, 3170.	12.8	114
14	Synthesis of bipyridine-based covalent organic frameworks for visible-light-driven photocatalytic water oxidation. Applied Catalysis B: Environmental, 2020, 262, 118271.	20.2	113
15	Organo-functionalized silica hollow nanospheres: synthesis and catalytic application. Journal of Materials Chemistry A, 2013, 1, 1525-1535.	10.3	96
16	Cationic Zn–Porphyrin Polymer Coated onto CNTs as a Cooperative Catalyst for the Synthesis of Cyclic Carbonates. ACS Applied Materials & Samp; Interfaces, 2018, 10, 2546-2555.	8.0	92
17	Hydration of Epoxides on [Co ^{III} (salen)] Encapsulated in Silicaâ€Based Nanoreactors. Angewandte Chemie - International Edition, 2012, 51, 11517-11521.	13.8	90
18	Preparation of Nitrogen-Doped Carbon Nanotubes with Different Morphologies from Melamine-Formaldehyde Resin. ACS Applied Materials & Interfaces, 2015, 7, 7413-7420.	8.0	89

#	Article	IF	CITATIONS
19	Synthesis of covalent organic frameworks $\langle i \rangle$ in situ $\langle j \rangle$ salen skeleton formation for catalytic applications. Journal of Materials Chemistry A, 2019, 7, 5482-5492.	10.3	89
20	The cooperation of porphyrin-based porous polymer and thermal-responsive ionic liquid for efficient CO ₂ cycloaddition reaction. Green Chemistry, 2018, 20, 903-911.	9.0	88
21	Direct synthesis of highly ordered amine-functionalized mesoporous ethane-silicas. Microporous and Mesoporous Materials, 2008, 109, 172-183.	4.4	86
22	Accelerated catalytic activity of Pd NPs supported on amine-rich silica hollow nanospheres for quinoline hydrogenation. Catalysis Science and Technology, 2017, 7, 2221-2227.	4.1	81
23	Structural Engineering of Two-Dimensional Covalent Organic Frameworks for Visible-Light-Driven Organic Transformations. ACS Applied Materials & Interfaces, 2020, 12, 20354-20365.	8.0	80
24	Asymmetric Catalysis with Metal Complexes in Nanoreactors. Chemistry - an Asian Journal, 2008, 3, 1214-1229.	3.3	79
25	Enhanced Hydrogenation Performance over Hollow Structured Co oO <i>x</i> @N Capsules. Advanced Science, 2019, 6, 1900807.	11.2	79
26	The Development of Yolk–Shellâ€Structured Pd&ZnO@Carbon Submicroreactors with High Selectivity and Stability. Advanced Functional Materials, 2018, 28, 1801737.	14.9	78
27	Novel conjugated organic polymers as candidates for visible-light-driven photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2019, 241, 461-470.	20.2	77
28	The enantioselective cyanosilylation of aldehydes on a chiral VO(Salen) complex encapsulated in SBA-16. Green Chemistry, 2009, 11, 257-264.	9.0	76
29	Hierarchical mesoporous organic polymer with an intercalated metal complex for the efficient synthesis of cyclic carbonates from flue gas. Green Chemistry, 2016, 18, 6493-6500.	9.0	74
30	Enhanced lithium storage capacity of Co ₃ O ₄ hexagonal nanorings derived from Co-based metal organic frameworks. Journal of Materials Chemistry A, 2014, 2, 17408-17414.	10.3	72
31	Microenvironment Engineering of Ruthenium Nanoparticles Incorporated into Silica Nanoreactors for Enhanced Hydrogenations. Angewandte Chemie - International Edition, 2019, 58, 14483-14488.	13.8	71
32	Hydroformylation of 1-octene in Pickering emulsion constructed by amphiphilic mesoporous silica nanoparticles. Journal of Catalysis, 2016, 334, 52-59.	6.2	70
33	Cationic Zn-Porphyrin Immobilized in Mesoporous Silicas as Bifunctional Catalyst for CO ₂ Cycloaddition Reaction under Cocatalyst Free Conditions. ACS Sustainable Chemistry and Engineering, 2018, 6, 9237-9245.	6.7	69
34	Mesoporous Ethaneâ^'Silicas Functionalized with trans-(1R,2R)-Diaminocyclohexane as Heterogeneous Chiral Catalysts. Chemistry of Materials, 2005, 17, 6154-6160.	6.7	67
35	Periodic Mesoporous Organosilicas with 1,4-Diethylenebenzene in the Mesoporous Wall:  Synthesis, Characterization, and Bioadsorption Properties. Journal of Physical Chemistry C, 2007, 111, 10948-10954.	3.1	65
36	The nanocomposites of SO3H-hollow-nanosphere and chiral amine for asymmetric aldol reaction. Journal of Materials Chemistry, 2009, 19, 8580.	6.7	63

#	Article	IF	CITATIONS
37	Chirally functionalized mesoporous organosilicas with built-in BINAP ligand for asymmetric catalysis. Journal of Materials Chemistry, 2009, 19, 8009.	6.7	61
38	Highly Active and Selective RuPd Bimetallic NPs for the Cleavage of the Diphenyl Ether C–O Bond. ACS Catalysis, 2018, 8, 11174-11183.	11.2	60
39	Engineering of Yolk/Core–Shell Structured Nanoreactors for Thermal Hydrogenations. Small, 2021, 17, e1906250.	10.0	60
40	Organosilica nanotubes: large-scale synthesis and encapsulation of metal nanoparticles. Chemical Communications, 2011, 47, 8073.	4.1	59
41	Oxygen evolution from water oxidation on molecular catalysts confined in the nanocages of mesoporous silicas. Energy and Environmental Science, 2012, 5, 8229.	30.8	58
42	Designed synthesis of sulfonated polystyrene/mesoporous silica hollow nanospheres as efficient solid acid catalysts. Journal of Materials Chemistry A, 2014, 2, 7546-7554.	10.3	58
43	Zinc–cobalt oxides as efficient water oxidation catalysts: the promotion effect of ZnO. Journal of Materials Chemistry A, 2015, 3, 4010-4017.	10.3	58
44	Micro-scale spatial location engineering of COF–TiO ₂ heterojunctions for visible light driven photocatalytic alcohol oxidation. Journal of Materials Chemistry A, 2020, 8, 18745-18754.	10.3	58
45	Review of advances in bifunctional solid acid/base catalysts for sustainable biodiesel production. Applied Catalysis A: General, 2022, 633, 118525.	4.3	57
46	Asymmetric photocatalysis over robust covalent organic frameworks with tetrahydroquinoline linkage. Chinese Journal of Catalysis, 2020, 41, 1288-1297.	14.0	54
47	Highly ordered periodic mesoporous ethanesilica synthesized under neutral conditions. Journal of Materials Chemistry, 2005, 15, 2562.	6.7	53
48	Synthesis of Bifunctional Porphyrin Polymers for Catalytic Conversion of Dilute CO ₂ to Cyclic Carbonates. ACS Applied Materials & Interfaces, 2021, 13, 29522-29531.	8.0	53
49	Heterogeneous hydroformylation of long-chain alkenes in IL-in-oil Pickering emulsion. Green Chemistry, 2018, 20, 188-196.	9.0	53
50	Positional immobilization of Pd nanoparticles and enzymes in hierarchical yolk–shell@shell nanoreactors for tandem catalysis. Chemical Communications, 2017, 53, 7780-7783.	4.1	52
51	One-pot fabrication of yolk–shell nanospheres with ultra-small Au nanoparticles for catalysis. Chemical Communications, 2015, 51, 3750-3753.	4.1	49
52	(<i>R</i>)â€(+)â€Binolâ€Functionalized Mesoporous Organosilica as a Highly Efficient Preâ€Chiral Catalyst for Asymmetric Catalysis. Chemistry - an Asian Journal, 2010, 5, 1232-1239.	3.3	48
53	CNTs@Fe–N–C core–shell nanostructures as active electrocatalyst for oxygen reduction. Journal of Materials Chemistry A, 2014, 2, 11768.	10.3	47
54	The promotion effect of π-π interactions in Pd NPs catalysed selective hydrogenation. Nature Communications, 2022, 13, 1770.	12.8	45

#	Article	IF	Citations
55	From Hollow Nanosphere to Hollow Microsphere: Mild Buffer Provides Easy Access to Tunable Silica Structure. Journal of Physical Chemistry C, 2008, 112, 16445-16451.	3.1	43
56	Ultrasmall Platinum Stabilized on Triphenylphosphineâ€Modified Silica for Chemoselective Hydrogenation. Chemistry - A European Journal, 2017, 23, 7791-7797.	3.3	42
57	Synthesis of a Pyridine–Zincâ€Based Porous Organic Polymer for the Coâ€catalystâ€Free Cycloaddition of Epoxides. Chemistry - an Asian Journal, 2017, 12, 1095-1103.	3.3	37
58	Chirally Functionalized Hollow Nanospheres Containing <scp>L</scp> â€Prolinamide: Synthesis and Asymmetric Catalysis. Chemistry - A European Journal, 2010, 16, 7852-7858.	3.3	36
59	Towards efficient chemical synthesis via engineering enzyme catalysis in biomimetic nanoreactors. Chemical Communications, 2015, 51, 13731-13739.	4.1	36
60	Super-microporous organosilicas synthesized from well-defined nanobuilding units. Journal of Materials Chemistry, 2008, 18, 450-457.	6.7	35
61	Fabrication of core–shell structured mesoporous silica nanospheres with dually oriented mesochannels through pore engineering. Journal of Materials Chemistry A, 2014, 2, 8118-8125.	10.3	30
62	Synthesis of mesoporous aluminosilicates with low Si/Al ratios using a single-source molecular precursor under acidic conditions. Journal of Porous Materials, 2006, 13, 187-193.	2.6	29
63	Enhanced thermostability of enzymes accommodated in thermo-responsive nanopores. Chemical Science, 2012, 3, 3398.	7.4	29
64	Promoted activity of Cr(Salen) in a nanoreactor for kinetic resolution of terminal epoxides. Chemical Science, 2012, 3, 2864.	7.4	28
65	Nanostructured hybrid NiFeOOH/CNT electrocatalysts for oxygen evolution reaction with low overpotential. RSC Advances, 2016, 6, 74536-74544.	3.6	28
66	Assembly of COFs layer and electron mediator on silica for visible light driven photocatalytic NADH regeneration. Applied Catalysis B: Environmental, 2022, 310, 121314.	20.2	28
67	Highly active water oxidation on nanostructured biomimetic calcium manganese oxide catalysts. Journal of Materials Chemistry A, 2016, 4, 6585-6594.	10.3	27
68	Cocatalystâ€Free Hybrid Ionic Liquid (IL)â€Based Porous Materials for Efficient Synthesis of Cyclic Carbonates through a Cooperative Activation Pathway. Chemistry - an Asian Journal, 2017, 12, 577-585.	3.3	27
69	Highly active ultrafine Pd NPs confined in imine-linked COFs for nitrobenzene hydrogenation. Catalysis Science and Technology, 2021, 11, 3873-3879.	4.1	27
70	Superhydrophobic mesoporous silica nanospheres achieved via a high level of organo-functionalization. Chemical Communications, 2014, 50, 10830.	4.1	26
71	Enhancing the catalytic activity of Ru NPs deposited with carbon species in yolk–shell nanostructures. Journal of Materials Chemistry A, 2016, 4, 10956-10963.	10.3	26
72	The Fabrication of Pd Single Atoms/Clusters on COF Layers as Co-catalysts for Photocatalytic H ₂ Evolution. ACS Applied Materials & Interfaces, 2022, 14, 6885-6893.	8.0	26

#	Article	IF	CITATIONS
73	pH-Sensitive mesoporous zirconium diphosphonates for controllable colon-targeted delivery. Journal of Materials Chemistry, 2010, 20, 6495.	6.7	25
74	Polymer@silica composites with tunable outer and inner surface properties: a platform for aqueous asymmetric transfer hydrogenation. Green Chemistry, 2015, 17, 1899-1906.	9.0	25
75	Enormous Promotion of Photocatalytic Activity through the Use of Near-Single Layer Covalent Organic Frameworks. CCS Chemistry, 2022, 4, 2429-2439.	7.8	25
76	Amino acid assisted synthesis of mesoporous TiO2 nanocrystals for high performance dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 10438.	6.7	24
77	Cooperative Activation of Cobalt–Salen Complexes for Epoxide Hydration Promoted on Flexible Porous Organic Frameworks. Chemistry - A European Journal, 2017, 23, 11504-11508.	3.3	24
78	Mesoporous Aluminium Organophosphonates Functionalized with ChiralL-Proline Groups in the Pore. European Journal of Inorganic Chemistry, 2006, 2006, 1936-1939.	2.0	23
79	Systematic morphology and phase control of Mg-ptcda coordination polymers by Ostwald ripening and self-templating. Journal of Materials Chemistry, 2012, 22, 8470.	6.7	23
80	Epoxides hydration on CollI(salen)-OTs encapsulated in silica nanocages modified with prehydrolyzed TMOS. Journal of Catalysis, 2016, 338, 184-191.	6.2	22
81	Efficient Asymmetric Hydrogenation of Quinolines over Chiral Porous Polymers Integrated with Substrate Activation Sites. ACS Catalysis, 2020, 10, 1783-1791.	11.2	20
82	Chemoselective NADH Regeneration: the Synergy Effect of TiO _{<i>x</i>} and Pt in NAD ⁺ Hydrogenation. ACS Sustainable Chemistry and Engineering, 2021, 9, 6499-6506.	6.7	20
83	3-D flowerlike architectures constructed by ultrathin perpendicularly aligned mesoporous nanoflakes for enhanced asymmetric catalysis. Chemical Communications, 2011, 47, 4087.	4.1	19
84	Hydrogenation of benzoic acid derivatives over Pt/TiO2 under mild conditions. Communications Chemistry, 2021, 4, .	4.5	19
85	Activation of Carbonyl Groups via Weak Interactions in Pt/COF/SiO ₂ Catalyzed Selective Hydrogenation. ACS Catalysis, 2022, 12, 6618-6627.	11.2	19
86	Entrapment of metal nanoparticles within nanocages of mesoporous silicas aided by co-surfactants. Journal of Materials Chemistry, 2012, 22, 21045.	6.7	18
87	Aluminium-containing mesoporous benzene-silicas with crystal-like pore wall structure. Journal of Materials Chemistry, 2005, 15, 4268.	6.7	17
88	Improved catalytic performance of encapsulated Ru nanowires for aqueous-phase Fischer–Tropsch synthesis. Catalysis Science and Technology, 2016, 6, 2181-2187.	4.1	17
89	Fabrication of NanoCOF/Polyoxometallate Composites for Photocatalytic NADH Regeneration via Cascade Electron Relay. Solar Rrl, 2021, 5, .	5.8	17
90	Asymmetric hydrogenation by RuCl ₂ (R-Binap)(dmf) _n encapsulated in silica-based nanoreactors. Catalysis Science and Technology, 2015, 5, 666-672.	4.1	16

#	Article	IF	Citations
91	Asymmetric hydrogenation in nanoreactors with encapsulated Rh-MonoPhos catalyst. Green Chemistry, 2015, 17, 1702-1709.	9.0	15
92	Fabrication of Efficient Hydrogenation Nanoreactors by Modifying the Freedom of Ultrasmall Platinum Nanoparticles within Yolk–Shell Nanospheres. Chemistry - A European Journal, 2015, 21, 10490-10496.	3.3	15
93	One-pot synthesis of mesosilica/nano covalent organic polymer composites and their synergistic effect in photocatalysis. Chinese Journal of Catalysis, 2021, 42, 1821-1830.	14.0	15
94	Ultra-small Au nanoparticles stabilized by silica hollow nanospheres for styrene oxidation with oxygen. RSC Advances, 2015, 5, 105747-105752.	3.6	14
95	Tuning the Surface Polarity of Microporous Organic Polymers for CO ₂ Capture. Chemistry - an Asian Journal, 2017, 12, 2291-2298.	3.3	14
96	Catalytic applications of sulfonic acid functionalized mesoporous organosilicas with different fraction of organic groups in the pore wall. Journal of Porous Materials, 2009, 16, 273-281.	2.6	13
97	Preparation of Zn–Co–O mixed-metal oxides nanoparticles through a facile coordination polymer based process. RSC Advances, 2013, 3, 4081.	3.6	13
98	Synthesis of CNTs@POPâ€Salen Coreâ€Shell Nanostructures for Catalytic Epoxides Hydration. ChemCatChem, 2019, 11, 3952-3958.	3.7	13
99	Efficient Production of Nitrones via One-Pot Reductive Coupling Reactions Using Bimetallic RuPt NPs. ACS Catalysis, 2020, 10, 13701-13709.	11.2	13
100	The Influence of Surface Structure of RhPt Bimetallic Nanoparticles on the Hydrogenation of Aromatic Compounds. Journal of Physical Chemistry C, 2021, 125, 15275-15282.	3.1	11
101	Microenvironment Engineering of Ruthenium Nanoparticles Incorporated into Silica Nanoreactors for Enhanced Hydrogenations. Angewandte Chemie, 2019, 131, 14625-14630.	2.0	10
102	Aminopolymer Confined in Ethaneâ€silica Nanotubes for CO ₂ Capture from Ambient Air. ChemNanoMat, 2020, 6, 1096-1103.	2.8	10
103	Rh-PPh3-polymer@mesosilica composite catalyst for the hydroformylation of 1-octene. Chinese Journal of Catalysis, 2015, 36, 168-174.	14.0	9
104	A highly active non-precious metal catalyst based on Fe–N–C@CNTs for nitroarene reduction. RSC Advances, 2016, 6, 96203-96209.	3.6	9
105	Synthesis of polymer/CNTs composites for the heterogeneous asymmetric hydrogenation of quinolines. Chinese Journal of Catalysis, 2019, 40, 1548-1556.	14.0	9
106	Highly efficient solid catalysts for asymmetric hydrogenation fabricated via facile adsorption of Rh–MonoPhos on porous silicas. Catalysis Science and Technology, 2014, 4, 1012-1016.	4.1	8
107	Yolk–shell nanospheres with soluble amino-polystyrene as a reservoir for Pd NPs. RSC Advances, 2015, 5, 35730-35736.	3.6	8
108	Can Li: A Career in Catalysis. ACS Catalysis, 2022, 12, 3063-3082.	11.2	8

#	Article	IF	CITATIONS
109	Water accelerated activity of Ru NPs in sequential hydrogenation of nitrobenzene to cyclohexylamine. Journal of Catalysis, 2022, 413, 546-553.	6.2	8
110	Algebraic approach to stretching vibrational spectrum of H2S. Science Bulletin, 1999, 44, 1961-1964.	1.7	7
111	Fabrication of ZnO with tunable morphology through a facile treatment of Zn-based coordination polymers. Science China Chemistry, 2015, 58, 411-416.	8.2	7
112	Adjusting the Acid Strength of Hybrid Solid Acids in Confined Nanospace. Topics in Catalysis, 2016, 59, 1748-1756.	2.8	7
113	Synthesis of Sulfonated Porous Organic Polymers with a Hydrophobic Core for Efficient Acidic Catalysis in Organic Transformations. Chemistry - an Asian Journal, 2021, 16, 2041-2047.	3.3	7
114	Development of efficient solid chiral catalysts with designable linkage for asymmetric transfer hydrogenation of quinoline derivatives. Chinese Journal of Catalysis, 2021, 42, 1576-1585.	14.0	6
115	Methanol Steam Reforming over ZnO/ZnZrOx: Performance Enhanced with a Cooperative Effect. ChemCatChem, 2022, 14, .	3.7	5
116	Functionalized periodic mesoporous organosilicas: Hierarchical and chiral materials. Science China Chemistry, 2010, 53, 351-356.	8.2	4
117	Lithium–Sulfur Batteries: Dualâ€Functional Atomic Zinc Decorated Hollow Carbon Nanoreactors for Kinetically Accelerated Polysulfides Conversion and Dendrite Free Lithium Sulfur Batteries (Adv.) Tj ETQq1 1 0.784	1311945rgBT	/@verlock 1
118	Waterâ€Promoted Heterogeneous Asymmetric Hydrogenation of Quinolines over Ordered Macroporous Poly(ionic liquid) Catalyst. Asian Journal of Organic Chemistry, 2020, 9, 1623-1630.	2.7	4
119	Fabrication of Flexible Coâ€salen Integrated Polymers for Hydration of Epoxides and Alkynes via Cooperative Activation. ChemNanoMat, 2022, 8, .	2.8	4
120	Submicroreactors: Enhanced Hydrogenation Performance over Hollow Structured Coâ€CoO <i>x</i> @Nâ€C Capsules (Adv. Sci. 22/2019). Advanced Science, 2019, 6, 1970135.	11.2	3
121	Facile Synthesis of Hybrid Core–Shell Nanospheres for the Asymmetric Transfer Hydrogenation of Aromatic Ketones. ChemCatChem, 2014, 6, 1368-1374.	3.7	2
122	Submicroreactors: The Development of Yolk-Shell-Structured Pd&ZnO@Carbon Submicroreactors with High Selectivity and Stability (Adv. Funct. Mater. 32/2018). Advanced Functional Materials, 2018, 28, 1870227.	14.9	1
123	Innentitelbild: Microenvironment Engineering of Ruthenium Nanoparticles Incorporated into Silica Nanoreactors for Enhanced Hydrogenations (Angew. Chem. 41/2019). Angewandte Chemie, 2019, 131, 14530-14530.	2.0	1
124	Synthesis of Silica Hollow Nanoreactors with Finely Engineered Inner/Outer Surface Properties. ChemistrySelect, 2018, 3, 544-549.	1.5	0
125	Yolk-Shell Structured Functional Nanoreactors for Organic Transformations. Nanostructure Science and Technology, 2021, , 379-394.	0.1	0