
Christine Charles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2925946/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasmas for spacecraft propulsion. Journal Physics D: Applied Physics, 2009, 42, 163001.	2.8	299
2	Current-free double-layer formation in a high-density helicon discharge. Applied Physics Letters, 2003, 82, 1356-1358.	3.3	263
3	Space micropropulsion systems for Cubesats and small satellites: From proximate targets to furthermost frontiers. Applied Physics Reviews, 2018, 5, .	11.3	242
4	A review of recent laboratory double layer experiments. Plasma Sources Science and Technology, 2007, 16, R1-R25.	3.1	231
5	Laboratory evidence of a supersonic ion beam generated by a current-free "helicon―double-layer. Physics of Plasmas, 2004, 11, 1706-1714.	1.9	177
6	Electron Diamagnetic Effect on Axial Force in an Expanding Plasma: Experiments and Theory. Physical Review Letters, 2011, 107, 235001.	7.8	132
7	Observations of Ion-Beam Formation in a Current-Free Double Layer. Physical Review Letters, 2005, 95, 025004.	7.8	131
8	Direct thrust measurement of a permanent magnet helicon double layer thruster. Applied Physics Letters, 2011, 98, .	3.3	113
9	Approaching the Theoretical Limit of Diamagnetic-Induced Momentum in a Rapidly Diverging Magnetic Nozzle. Physical Review Letters, 2013, 110, 195003.	7.8	100
10	Xenon ion beam characterization in a helicon double layer thruster. Applied Physics Letters, 2006, 89, 261503.	3.3	94
11	Measurement of the energy distribution of trapped and free electrons in a current-free double layer. Physics of Plasmas, 2007, 14, .	1.9	94
12	Performance characterization of a helicon double layer thruster using direct thrust measurements. Journal Physics D: Applied Physics, 2011, 44, 235201.	2.8	91
13	Testing a Helicon Double Layer Thruster Immersed in a Space-Simulation Chamber. Journal of Propulsion and Power, 2008, 24, 134-141.	2.2	86
14	Plasma sputtering deposition of platinum into porous fuel cell electrodes. Journal Physics D: Applied Physics, 2004, 37, 3419-3423.	2.8	82
15	Transport of energetic electrons in a magnetically expanding helicon double layer plasma. Applied Physics Letters, 2009, 94, .	3.3	81
16	High density conics in a magnetically expanding helicon plasma. Applied Physics Letters, 2010, 96, 051502.	3.3	80
17	A magnetic nozzle calculation of the force on a plasma. Physics of Plasmas, 2012, 19, .	1.9	76
18	Absolute measurements and modeling of radio frequency electric fields using a retarding field energy analyzer. Physics of Plasmas. 2000. 7. 5232-5241.	1.9	74

#	Article	IF	CITATIONS
19	Plasma Catalytic Synthesis of Ammonia Using Functionalized-Carbon Coatings in an Atmospheric-Pressure Non-equilibrium Discharge. Plasma Chemistry and Plasma Processing, 2016, 36, 917-940.	2.4	74
20	Breakdown behavior in radio-frequency argon discharges. Physics of Plasmas, 2003, 10, 875-881.	1.9	70
21	Theory for Formation of a Low-Pressure, Current-Free Double Layer. Physical Review Letters, 2006, 97, 045003.	7.8	70
22	Deposition and diffusion of platinum nanoparticles in porous carbon assisted by plasma sputtering. Surface and Coatings Technology, 2005, 200, 391-394.	4.8	69
23	Experimental Evidence of a Double Layer in a Large Volume Helicon Reactor. Physical Review Letters, 2005, 95, 205002.	7.8	64
24	One-dimensional particle-in-cell simulation of a current-free double layer in an expanding plasma. Physics of Plasmas, 2005, 12, 052317.	1.9	63
25	The magnetic-field-induced transition from an expanding plasma to a double layer containing expanding plasma. Applied Physics Letters, 2007, 91, 201505.	3.3	60
26	Hydrogen ion beam generated by a current-free double layer in a helicon plasma. Applied Physics Letters, 2004, 84, 332-334.	3.3	58
27	Characterization of silicon dioxide films deposited at low pressure and temperature in a helicon diffusion reactor. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1993, 11, 2954-2963.	2.1	56
28	Spatial retarding field energy analyzer measurements downstream of a helicon double layer plasma. Applied Physics Letters, 2008, 93, 071505.	3.3	56
29	Direct thrust measurements and modelling of a radio-frequency expanding plasma thruster. Physics of Plasmas, 2011, 18, .	1.9	56
30	Measurement and modelling of a radiofrequency micro-thruster. Plasma Sources Science and Technology, 2012, 21, 022002.	3.1	56
31	High temperature electrons exhausted from rf plasma sources along a magnetic nozzle. Physics of Plasmas, 2017, 24, 084503.	1.9	55
32	A theory for formation of a low pressure, current-free double layer. Journal Physics D: Applied Physics, 2006, 39, 3294-3304.	2.8	54
33	Measurement and modeling of ion energy distribution functions in a low pressure argon plasma diffusing from a 13.56 MHz helicon source. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1992, 10, 398-403.	2.1	53
34	Performance improvement of a permanent magnet helicon plasma thruster. Journal Physics D: Applied Physics, 2013, 46, 352001.	2.8	52
35	Characterization of a helicon plasma source in low diverging magnetic fields. Journal Physics D: Applied Physics, 2011, 44, 055202.	2.8	51
36	Plasma based platinum nanoaggregates deposited on carbon nanofibers improve fuel cell efficiency. Applied Physics Letters, 2007, 90, 223119.	3.3	50

#	Article	IF	CITATIONS
37	Electron Energy Distribution of a Current-Free Double Layer: Druyvesteyn Theory and Experiments. Physical Review Letters, 2011, 107, 035002.	7.8	50
38	The Current-Free Electric Double Layer in a Coronal Magnetic Funnel. Astrophysical Journal, 2006, 640, L199-L202.	4.5	49
39	Ion beam formation in a low-pressure geometrically expanding argon plasma. Applied Physics Letters, 2007, 91, 241501.	3.3	44
40	Anomalous Diffusion Mediated by Atom Deposition into a Porous Substrate. Physical Review Letters, 2009, 102, 045901.	7.8	44
41	Deposition of silicon dioxide films using the helicon diffusion reactor for integrated optics applications. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1994, 12, 2754-2761.	2.1	42
42	Low energy plasma treatment of Nafion® membranes for PEM fuel cells. Journal of Power Sources, 2007, 165, 41-48.	7.8	42
43	lon energy distribution functions in a multipole confined argon plasma diffusing from a 13.56â€MHz helicon source. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1993, 11, 157-163.	2.1	41
44	SiO2 deposition from oxygen/silane pulsed helicon diffusion plasmas. Applied Physics Letters, 1995, 67, 40-42.	3.3	41
45	Time development of a current-free double-layer. Physics of Plasmas, 2004, 11, 3808-3812.	1.9	41
46	The ion velocity distribution function in a current-free double layer. Physics of Plasmas, 2005, 12, 093502.	1.9	41
47	Thermodynamic Study on Plasma Expansion along a Divergent Magnetic Field. Physical Review Letters, 2016, 116, 025001.	7.8	41
48	Solid polymer fuel cell synthesis by low pressure plasmas: a short review. EPJ Applied Physics, 2006, 34, 151-156.	0.7	41
49	Ion Detachment in the Helicon Double-Layer Thruster Exhaust Beam. Journal of Propulsion and Power, 2006, 22, 24-30.	2.2	39
50	Axial force imparted by a current-free magnetically expanding plasma. Physics of Plasmas, 2012, 19, 083509.	1.9	39
51	Adiabatic Expansion of Electron Gas in a Magnetic Nozzle. Physical Review Letters, 2018, 120, 045001.	7.8	39
52	Stress reduction in silicon dioxide layers by pulsing an oxygen/silane helicon diffusion plasma. Journal of Applied Physics, 1998, 84, 350-354.	2.5	38
53	Investigation of radiofrequency plasma sources for space travel. Plasma Physics and Controlled Fusion, 2012, 54, 124021.	2.1	38
54	Demonstrating a new technology for space debris removal using a bi-directional plasma thruster. Scientific Reports, 2018, 8, 14417.	3.3	37

#	Article	IF	CITATIONS
55	Bias formation in a pulsed radiofrequency argon discharge. Journal of Applied Physics, 1997, 82, 561-565.	2.5	36
56	Radial characterization of the electron energy distribution in a helicon source terminated by a double layer. Physics of Plasmas, 2008, 15, 074505.	1.9	36
57	Effect of magnetic and physical nozzles on plasma thruster performance. Plasma Sources Science and Technology, 2014, 23, 044004.	3.1	36
58	Plasma diffusion from a low pressure radio frequency source. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1991, 9, 661-663.	2.1	35
59	An experimental investigation of alternative propellants for the helicon double layer thruster. Journal Physics D: Applied Physics, 2008, 41, 175213.	2.8	35
60	Thrust measurements in a low-magnetic field high-density mode in the helicon double layer thruster. Journal Physics D: Applied Physics, 2010, 43, 305203.	2.8	35
61	Effect of wall charging on an oxygen plasma created in a helicon diffusion reactor used for silica deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1995, 13, 2067-2073.	2.1	34
62	Breakdown, steadyâ€state, and decay regimes in pulsed oxygen helicon diffusion plasmas. Journal of Applied Physics, 1995, 78, 766-773.	2.5	33
63	Integrated plasma synthesis of efficient catalytic nanostructures for fuel cell electrodes. Nanotechnology, 2007, 18, 305603.	2.6	33
64	Direct measurement of neutral gas heating in a radio-frequency electrothermal plasma micro-thruster. Applied Physics Letters, 2013, 103, .	3.3	33
65	Double layer in an expanding plasma: Simultaneous upstream and downstream measurements. Physics of Plasmas, 2008, 15, .	1.9	31
66	Volume and surface propellant heating in an electrothermal radio-frequency plasma micro-thruster. Applied Physics Letters, 2014, 105, .	3.3	31
67	Non-local electron energy probability function in a plasma expanding along a magnetic nozzle. Frontiers in Physics, 2015, 3, .	2.1	31
68	Oblique Double Layers: A Comparison between Terrestrial and Auroral Measurements. Physical Review Letters, 2009, 103, 095001.	7.8	30
69	High density mode in xenon produced by a Helicon Double Layer Thruster. Journal Physics D: Applied Physics, 2009, 42, 245201.	2.8	30
70	Defining Plasma Polymerization: New Insight Into What We Should Be Measuring. ACS Applied Materials & Interfaces, 2013, 5, 5387-5391.	8.0	30
71	High source potential upstream of a current-free electric double layer. Physics of Plasmas, 2005, 12, 044508.	1.9	29
72	Experimental evidence of parametric decay processes in the variable specific impulse magnetoplasma rocket (VASIMR) helicon plasma source. Physics of Plasmas, 2004, 11, 5125-5129.	1.9	28

#	Article	IF	CITATIONS
73	Axial force imparted by a conical radiofrequency magneto-plasma thruster. Applied Physics Letters, 2012, 100, 113504.	3.3	28
74	Quantitative infrared analysis of the stretching peak of SiO2films deposited from tetraethoxysilane plasmas. Journal of Applied Physics, 1993, 74, 6876-6882.	2.5	27
75	Plasma control by modification of helicon wave propagation in low magnetic fields. Physics of Plasmas, 2010, 17, 073508.	1.9	27
76	Ion beam formation in a very low magnetic field expanding helicon discharge. Physics of Plasmas, 2010, 17, 043505.	1.9	27
77	A high sensitivity momentum flux measuring instrument for plasma thruster exhausts and diffusive plasmas. Review of Scientific Instruments, 2009, 80, 053509.	1.3	26
78	Effect of Nafion and platinum content in a catalyst layer processed in a radio frequency helicon plasma system. Journal Physics D: Applied Physics, 2009, 42, 045207.	2.8	25
79	An Experimental and Analytical Study of an Asymmetric Capacitively Coupled Plasma Used for Plasma Polymerization. Plasma Processes and Polymers, 2014, 11, 833-841.	3.0	25
80	How plasma induced oxidation, oxygenation, and de-oxygenation influences viability of skin cells. Applied Physics Letters, 2016, 109, .	3.3	25
81	A Short Review of Experimental and Computational Diagnostics for Radiofrequency Plasma Micro-thrusters. Plasma Chemistry and Plasma Processing, 2016, 36, 29-44.	2.4	25
82	Energy balance in a low pressure capacitive discharge driven by a double-saddle antenna. Physics of Plasmas, 2003, 10, 891-899.	1.9	24
83	Upstream Ionization Instability Associated with a Current-Free Double Layer. Physical Review Letters, 2006, 97, 075003.	7.8	24
84	Detailed plasma potential measurements in a radio-frequency expanding plasma obtained from various electrostatic probes. Physics of Plasmas, 2009, 16, .	1.9	24
85	Particle-in-cell simulations of a current-free double layer. Physics of Plasmas, 2011, 18, 063502.	1.9	24
86	Plasma Expansion From a Radio Frequency Microdischarge. IEEE Transactions on Plasma Science, 2011, 39, 2512-2513.	1.3	24
87	Variable frequency matching to a radiofrequency source immersed in vacuum. Journal Physics D: Applied Physics, 2013, 46, 365203.	2.8	24
88	Thermodynamic Analogy for Electrons Interacting with a Magnetic Nozzle. Physical Review Letters, 2020, 125, 165001.	7.8	24
89	Xâ€ray photoelectron study of the reactive ion etching of SixGe1â^'x alloys in SF6 plasmas. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1996, 14, 156-164.	2.1	21
90	Carbon/platinum nanotextured films produced by plasma sputtering. Carbon, 2009, 47, 209-214.	10.3	21

#	Article	IF	CITATIONS
91	Characterization of the temperature of free electrons diffusing from a magnetically expanding current-free double layer plasma. Journal Physics D: Applied Physics, 2010, 43, 162001.	2.8	21
92	Low temperature growth of nanocrystalline TiO2 films with Ar/O2 low-field helicon plasma. Surface and Coatings Technology, 2011, 205, 3939-3946.	4.8	21
93	Boltzmann expansion in a radiofrequency conical helicon thruster operating in xenon and argon. Applied Physics Letters, 2013, 102, .	3.3	21
94	Improvement of the sputtered platinum utilization in proton exchange membrane fuel cells using plasma-based carbon nanofibres. Journal Physics D: Applied Physics, 2008, 41, 185307.	2.8	20
95	Mass spectrometric study of tetraethoxysilane and tetraethoxysilane–oxygen plasmas in a diode type radioâ€frequency reactor. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1992, 10, 1407-1413.	2.1	19
96	Magnetic steering of a helicon double layer thruster. Applied Physics Letters, 2008, 93, .	3.3	19
97	Effect of Exhaust Magnetic Field in a Helicon Double-Layer Thruster Operating in Xenon. IEEE Transactions on Plasma Science, 2008, 36, 2141-2146.	1.3	19
98	Double-layer ion acceleration triggered by ion magnetization in expanding radiofrequency plasma sources. Applied Physics Letters, 2010, 97, 141503.	3.3	19
99	Plasma propagation of a 13.56 MHz asymmetric surface barrier discharge in atmospheric pressure air. Journal Physics D: Applied Physics, 2011, 44, 205202.	2.8	19
100	Spatially resolved energy analyzer measurements of an ion beam on the low potential side of a current-free double-layer. IEEE Transactions on Plasma Science, 2005, 33, 336-337.	1.3	18
101	One-dimensional simulation of an ion beam generated by a current-free double-Layer. IEEE Transactions on Plasma Science, 2005, 33, 334-335.	1.3	18
102	One step multifunctional micropatterning of surfaces using asymmetric glow discharge plasma polymerization. Chemical Communications, 2012, 48, 1907.	4.1	18
103	Low-Weight Fixed Ceramic Capacitor Impedance Matching System for an Electrothermal Plasma Microthruster. Journal of Propulsion and Power, 2014, 30, 1117-1121.	2.2	18
104	Direct Measurement of Axial Momentum Imparted by an Electrothermal Radiofrequency Plasma Micro-Thruster. Frontiers in Physics, 2016, 4, .	2.1	18
105	A Comprehensive Cold Gas Performance Study of the Pocket Rocket Radiofrequency Electrothermal Microthruster. Frontiers in Physics, 2017, 4, .	2.1	18
106	Enhanced deposition rates in plasma sputter deposition. Plasma Sources Science and Technology, 1998, 7, 245-251.	3.1	17
107	Micro-arcing in radio frequency plasmas. Journal Physics D: Applied Physics, 2004, 37, 2871-2875.	2.8	17
108	Operating the Helicon Double Layer Thruster in a Space Simulation Chamber. IEEE Transactions on Plasma Science, 2008, 36, 1196-1197.	1.3	17

#	Article	IF	CITATIONS
109	Spatial evolution of an ion beam created by a geometrically expanding low-pressure argon plasma. Applied Physics Letters, 2008, 92, .	3.3	17
110	High-temperature hypersonic Laval nozzle for non-LTE cavity ringdown spectroscopy. Journal of Chemical Physics, 2020, 152, 134201.	3.0	17
111	Overview of probe diagnostics on the H-1 heliac. Review of Scientific Instruments, 1999, 70, 476-479.	1.3	16
112	Operating Radio Frequency Antennas Immersed in Vacuum: Implications for Ground-Testing Plasma Thrusters. Journal of Propulsion and Power, 2010, 26, 892-896.	2.2	16
113	Characterization of nanocrystalline nitrogen-containing titanium oxide obtained by N2/O2/Ar low-field helicon plasma sputtering. Journal Physics D: Applied Physics, 2011, 44, 455202.	2.8	16
114	Neutral gas temperature estimates and metastable resonance energy transfer for argon-nitrogen discharges. Physics of Plasmas, 2016, 23, .	1.9	16
115	Ge-doped SiO2 thin films produced by helicon activated reactive evaporation. Thin Solid Films, 2002, 419, 82-87.	1.8	15
116	Grounded radio-frequency electrodes in contact with high density plasmas. Physics of Plasmas, 2005, 12, 103505.	1.9	15
117	Electron temperature characterization and power balance in a low magnetic field helicon mode. Journal Physics D: Applied Physics, 2011, 44, 185204.	2.8	15
118	Diagnostic Efficacy of a Single Progesterone Determination to Assess Fullâ€Term Pregnancy in the Bitch. Reproduction in Domestic Animals, 2015, 50, 1028-1031.	1.4	15
119	Simulation of main plasma parameters of a cylindrical asymmetric capacitively coupled plasma micro-thruster using computational fluid dynamics. Frontiers in Physics, 2015, 2, .	2.1	15
120	Ion contribution to the deposition of silicon dioxide in oxygen/silane helicon diffusion plasmas. Journal of Applied Physics, 1997, 81, 43-49.	2.5	14
121	Helicon plasma with additional immersed antenna. Journal Physics D: Applied Physics, 2004, 37, 1334-1341.	2.8	14
122	Deep dry-etch of silica in a helicon plasma etcher for optical waveguide fabrication. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2005, 23, 146-150.	2.1	14
123	Sputtering effects in a helicon plasma with an additional immersed antenna. Plasma Sources Science and Technology, 2003, 12, 85-88.	3.1	13
124	Thickness-dependent stress in plasma-deposited silicon dioxide films. Journal of Applied Physics, 2005, 97, 084912.	2.5	13
125	Helicon Double Layer Thrusters. , 2006, , .		13
126	Three-Dimensional Mapping of Ion Density in a Double-Layer Helicon Plasma. IEEE Transactions on Plasma Science, 2008, 36, 1386-1387.	1.3	13

#	Article	IF	CITATIONS
127	Vacuum Testing of a Miniaturized Switch Mode Amplifier Powering an Electrothermal Plasma Micro-Thruster. Frontiers in Physics, 2017, 5, .	2.1	13
128	Non-local plasma generation in a magnetic nozzle. Physics of Plasmas, 2019, 26, 072107.	1.9	13
129	Neutral gas heating and ion transport in a constricted plasma flow. Physics of Plasmas, 2017, 24, .	1.9	12
130	<i>In situ</i> electrostatic characterisation of ion beams in the region of ion acceleration. Physics of Plasmas, 2018, 25, .	1.9	12
131	Performance modelling of plasma microthruster nozzles in vacuum. Journal of Applied Physics, 2018, 123, .	2.5	12
132	An Integrated RF Power Delivery and Plasma Micro-Thruster System for Nano-Satellites. Frontiers in Physics, 2018, 6, .	2.1	12
133	Initial Experiments on a Dual-Stage 4-Grid Ion Thruster for Very High Specific Impulse and Power. , 2006, , .		11
134	Experiments and theory of an upstream ionization instability excited by an accelerated electron beam through a current-free double layer. Physics of Plasmas, 2006, 13, 122101.	1.9	11
135	Deposition of platinum catalyst by plasma sputtering for fuel cells: 3D simulation and experiments. Plasma Sources Science and Technology, 2008, 17, 035028.	3.1	11
136	Magnetic Ion Beam Deflection in the Helicon Double-Layer Thruster. Journal of Propulsion and Power, 2010, 26, 1045-1052.	2.2	11
137	Asymmetric surface barrier discharge plasma driven by pulsed 13.56 MHz power in atmospheric pressure air. Journal Physics D: Applied Physics, 2010, 43, 342001.	2.8	11
138	Control of diffuse and filamentary modes in an RF asymmetric surface barrier discharge in atmospheric-pressure argon. Plasma Sources Science and Technology, 2012, 21, 055016.	3.1	11
139	Effect of radial plasma transport at the magnetic throat on axial ion beam formation. Physics of Plasmas, 2016, 23, 083515.	1.9	11
140	A POLYTROPIC MODEL FOR SPACE AND LABORATORY PLASMAS DESCRIBED BY BI-MAXWELLIAN ELECTRON DISTRIBUTIONS. Astrophysical Journal, 2016, 829, 10.	4.5	11
141	Decoupling ion energy and flux in intermediate pressure capacitively coupled plasmas via tailored voltage waveforms. Plasma Sources Science and Technology, 2020, 29, 124002.	3.1	11
142	Plasma synthesis of catalytic thin films. Pure and Applied Chemistry, 2002, 74, 471-474.	1.9	10
143	Interactions between arrayed hollow cathodes. Journal Physics D: Applied Physics, 2013, 46, 145204.	2.8	10
144	Particle in cell simulation of a radiofrequency plasma jet expanding in vacuum. Applied Physics Letters, 2015, 106, .	3.3	10

#	Article	IF	CITATIONS
145	Separating the location of geometric and magnetic expansions in low-pressure expanding plasmas. Plasma Sources Science and Technology, 2018, 27, 075003.	3.1	10
146	Spatio-temporal plasma heating mechanisms in a radio frequency electrothermal microthruster. Plasma Sources Science and Technology, 2018, 27, 085011.	3.1	10
147	Deposition and characterization of silica-based films by helicon-activated reactive evaporation applied to optical waveguide fabrication. Applied Optics, 2004, 43, 2978.	2.1	9
148	The effect of phase difference between powered electrodes on RF plasmas. Plasma Sources Science and Technology, 2005, 14, 407-411.	3.1	9
149	Low energy plasma treatment of a proton exchange membrane used for low temperature fuel cells. Plasma Physics and Controlled Fusion, 2007, 49, A73-A79.	2.1	9
150	Experimental investigation of a conical helicon double layer thruster arrangement. Plasma Sources Science and Technology, 2010, 19, 045003.	3.1	9
151	Nanosecond optical imaging spectroscopy of an electrothermal radiofrequency plasma thruster plume. Applied Physics Letters, 2013, 103, .	3.3	9
152	Spatiotemporal study of gas heating mechanisms in a radio-frequency electrothermal plasma micro-thruster. Frontiers in Physics, 2015, 3, .	2.1	9
153	Structurally supportive RF power inverter for a CubeSat electrothermal plasma micro-thruster with PCB inductors. , 2017, , .		9
154	Selective radial release of hot, magnetised electrons downstream of a low-pressure expanding plasma. Journal Physics D: Applied Physics, 2018, 51, 375204.	2.8	9
155	Effects of cross field diffusion in a low pressure high density oxygen/silane plasma. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2002, 20, 1275-1283.	2.1	8
156	Microarcing instability in RF PECVD plasma system. Surface and Coatings Technology, 2005, 198, 379-383.	4.8	8
157	Grand challenges in low-temperature plasma physics. Frontiers in Physics, 2014, 2, .	2.1	8
158	Plume Characteristics of an Electrothermal Plasma Microthruster. IEEE Transactions on Plasma Science, 2014, 42, 2728-2729.	1.3	8
159	Density Measurements in Low Pressure, Weakly Magnetized, RF Plasmas: Experimental Verification of the Sheath Expansion Effect. Frontiers in Physics, 2017, 5, .	2.1	8
160	An Inductively-Coupled Plasma Electrothermal Radiofrequency Thruster. Frontiers in Physics, 2020, 8,	2.1	8
161	Electrical characterization of a dc secondary discharge created during plasma sputtering deposition of palladium thin films. Plasma Sources Science and Technology, 2000, 9, 176-182.	3.1	7
162	Platinum nanocluster growth on vertically aligned carbon nanofiber arrays: Sputtering experiments and molecular dynamics simulations. Applied Surface Science, 2012, 263, 352-356.	6.1	7

#	Article	IF	CITATIONS
163	Transport of ion beam in an annular magnetically expanding helicon double layer thruster. Physics of Plasmas, 2014, 21, .	1.9	7
164	Commentary: On helicon thrusters: Will they ever fly?. Frontiers in Physics, 2020, 8, .	2.1	7
165	Characterization of a new variable magnetic field linear plasma device. Physics of Plasmas, 2021, 28, .	1.9	7
166	Surface modelling of reactive ion etching of silicon–germanium alloys in a SF6 plasma. Surface and Coatings Technology, 1997, 97, 465-468.	4.8	6
167	Wall effects on the chemistry in a pulsed oxygen/silane radiofrequency helicon plasma. Journal Physics D: Applied Physics, 2003, 36, 2076-2082.	2.8	6
168	The Innovative Dual-Stage 4-Grid Ion Thruster Concept - Theory And Experimental Results. , 2006, , .		6
169	Plasma expansion from a dielectric electron cyclotron resonance source. Physica Scripta, 2006, T122, 19-24.	2.5	6
170	Electron–cyclotron damping of helicon waves in low diverging magnetic fields. Physics of Plasmas, 2011, 18, .	1.9	6
171	Microarcing in a Helicon Plasma Reactor. IEEE Transactions on Plasma Science, 2011, 39, 1652-1659.	1.3	6
172	Hydrogen contamination in Ge-doped SiO2 thin films prepared by helicon activated reactive evaporation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 792-796.	2.1	5
173	A comparison between experimental results and a fluid description of a low pressure discharge driven by a double-saddle antenna. Journal Physics D: Applied Physics, 2005, 38, 2825-2829.	2.8	5
174	Comparison of stress in single and multiple layer depositions of plasma-deposited amorphous silicon dioxide. Journal Physics D: Applied Physics, 2006, 39, 164-171.	2.8	5
175	Interface creation and stress dynamics in plasma-deposited silicon dioxide films. Applied Physics Letters, 2006, 88, 234103.	3.3	5
176	Xenon Ion Beam Detachment From a Helicon Double Layer Thruster. IEEE Transactions on Plasma Science, 2008, 36, 1194-1195.	1.3	5
177	Space Simulation Testing of the Helicon Double Layer Thruster Prototype. , 2010, , .		5
178	Mode Transitions in the Helicon Double-Layer Thruster Prototype Operating in Xenon. IEEE Transactions on Plasma Science, 2011, 39, 2468-2469.	1.3	5
179	Surface discharge plasma actuator driven by a pulsed 13.56 MHz–5 kHz voltage waveform. Journal Physics D: Applied Physics, 2013, 46, 405201.	2.8	5
180	Principle of radial transport in low temperature annular plasmas. Physics of Plasmas, 2015, 22, .	1.9	5

#	Article	IF	CITATIONS
181	Redefinition of the self-bias voltage in a dielectrically shielded thin sheath RF discharge. Journal of Applied Physics, 2018, 123, .	2.5	5
182	Characterization and Control of an Ion-Acoustic Plasma Instability Downstream of a Diverging Magnetic Nozzle. Frontiers in Physics, 2020, 8, .	2.1	5
183	Preliminary Measurements of a Magnetic Steering System for RF Plasma Thruster Applications. , 2021, , .		5
184	Induced Flow and Optical Emission Generated by a Pulsed 13.56 MHz–5 kHz Plasma Actuator. IEEE Transactions on Plasma Science, 2013, 41, 3275-3278.	1.3	4
185	Electron energy probability function and L-p similarity in low pressure inductively coupled bounded plasma. Frontiers in Physics, 2015, 3, .	2.1	4
186	Measurement of bi-directional ion acceleration along a convergent-divergent magnetic nozzle. Applied Physics Letters, 2016, 108, .	3.3	4
187	Inducing locally structured ion energy distributions in intermediate-pressure plasmas. Physics of Plasmas, 2019, 26, .	1.9	4
188	Field-aligned Boltzmann electric triple layer in a low-pressure expanding plasma. Plasma Sources Science and Technology, 2019, 28, 06LT01.	3.1	4
189	Control of electron, ion and neutral heating in a radio-frequency electrothermal microthruster via dual-frequency voltage waveforms. Plasma Sources Science and Technology, 2019, 28, 035019.	3.1	4
190	TCP Plasma Sputtering of Nanostructured Fuel Cell Electrodes. IEEE Transactions on Plasma Science, 2008, 36, 872-873.	1.3	3
191	Synthesis of Carbon Nanofibers and Pt-Nanocluster-Based Electrochemical Microsystems by Combining Low-Pressure Helicon Plasma Techniques. IEEE Transactions on Plasma Science, 2008, 36, 882-883.	1.3	3
192	Solid Polymer Fuel Cell synthesis by low pressure plasmas: a short review. EPJ Applied Physics, 2008, 43, 137-137.	0.7	3
193	Investigation of effect of excitation frequency on electron energy distribution functions in low pressure radio frequency bounded plasmas. Physics of Plasmas, 2011, 18, 072102.	1.9	3
194	Characterization of the ion beam formed in a low magnetic field helicon mode. Journal Physics D: Applied Physics, 2011, 44, 145204.	2.8	3
195	Formation of spatially periodic fronts of high-energy electrons in a radio-frequency driven surface microdischarge. Applied Physics Letters, 2013, 102, 034109.	3.3	3
196	Pulsing a Low Pressure Radiofrequency Discharge JSME International Journal Series B, 1998, 41, 424-428.	0.3	2
197	Low-loss silica-based optical film waveguides deposited by helicon-activated reactive evaporation. Journal of Lightwave Technology, 2005, 23, 1302-1307.	4.6	2
198	Transport and Deposition of Plasma-Sputtered Platinum Atoms: Comparison Between Experiments and Simulation. IEEE Transactions on Plasma Science, 2008, 36, 884-885.	1.3	2

#	Article	IF	CITATIONS
199	Spatial evolution of EEPFs in a millimetre scale radio frequency argon plume. Journal Physics D: Applied Physics, 2013, 46, 365202.	2.8	2
200	Collisionless expansion of pulsed rf plasmas. Journal Physics D: Applied Physics, 2014, 47, 055207.	2.8	2
201	Observations of a mode transition in a hydrogen hollow cathode discharge using phase resolved optical emission spectroscopy. Applied Physics Letters, 2014, 105, 014104.	3.3	2
202	Characterization of an annular helicon plasma source powered by an outer or inner RF antenna. Plasma Sources Science and Technology, 2016, 25, 015007.	3.1	2
203	Cross-field transport of electrons at the magnetic throat in an annular plasma reactor. Journal Physics D: Applied Physics, 2017, 50, 015205.	2.8	2
204	Naphthalene as a Cubesat Cold Gas Thruster Propellant. Frontiers in Physics, 2020, 8, .	2.1	2
205	The INSPIRE-2 CubeSat for the QB50 Project. Space Science Reviews, 2020, 216, 1.	8.1	2
206	Role of ions in SiO2 deposition with pulsed and continuous helicon plasmas. Pure and Applied Chemistry, 2002, 74, 401-405.	1.9	1
207	Overview and Results from the H-1 National Facility. AIP Conference Proceedings, 2003, , .	0.4	1
208	Fluctuation in a helicon plasma with additional immersed antenna. IEEE Transactions on Plasma Science, 2005, 33, 360-361.	1.3	1
209	Three-Dimensional Magnetic Field Mapping of the Magnetically Steered Helicon Double-Layer Thruster. IEEE Transactions on Plasma Science, 2011, 39, 2460-2461.	1.3	1
210	Experimental Identification of Thrust Components Imparted by an Electrodeless Helicon Plasma Thruster. Transactions of the Japan Society for Aeronautical and Space Sciences Aerospace Technology Japan, 2014, 12, Pb_1-Pb_6.	0.2	1
211	Phase Resolved Imaging of a Repetitive Extrusion of Hydrogen Plasma From a Hollow Cathode Source. IEEE Transactions on Plasma Science, 2014, 42, 2834-2835.	1.3	1
212	Collisionless expansion of pulsed radio frequency plasmas. I. Front formation. Physics of Plasmas, 2016, 23, 013511.	1.9	1
213	Collisionless expansion of pulsed radio frequency plasmas. II. Parameter study. Physics of Plasmas, 2016, 23, 013512.	1.9	1
214	A compact RF power inverter with reduced EMI for a CubeSat electrothermal micro-thruster. , 2017, , .		1
215	Current-Free Electric Double Layer in a Small Collisional Plasma Thruster Nozzle Simulation. Frontiers in Physics, 2019, 7, .	2.1	1
216	Development of the nanotiter plate for use in antibody and cell array technologies. , 2005, , .		0

#	Article	IF	CITATIONS
217	Double layers in low pressure expanding magnetised plasmas. , 2008, , .		0
218	Plasma based improvements in fuel cells. , 2008, , .		0
219	Propagation Structure of a 13.56-MHz Asymmetric Surface Barrier Discharge Plasma in Atmospheric-Pressure Air. IEEE Transactions on Plasma Science, 2011, 39, 2082-2083.	1.3	0
220	Ion-Current Downstream of a Carbon Dioxide Helicon Double Layer. IEEE Transactions on Plasma Science, 2011, 39, 2446-2447.	1.3	0
221	Two new concepts in rf plasma sources for space travel. , 2012, , .		0
222	A Radio Frequency Plasma Micro-Thruster: Characterization of Various Discharge Gases Through Optical Diagnostics. , 2013, , .		0
223	Simulations of Electron Heating in a Capacitively Coupled Radio Frequency Micro-Thruster using Computational Fluid Dynamics. , 2013, , .		0
224	Approximants to the Tonks-Langmuir theory for a collisionless annular plasma. Physical Review E, 2015, 92, 063103.	2.1	0
225	Microplasma Array Patterning of Reactive Oxygen and Nitrogen Species onto Polystyrene. Frontiers in Physics, 2017, 5, .	2.1	0
226	Comparison of Submillinewton Thrust Measurements Between a Laser Interferometer and a Load Cell on a Pendulum Balance. Frontiers in Space Technologies, 2021, 2, .	1.4	0
227	Deposition of Silicon Dioxide Films Using the Helicon Diffusion Reactor for Integrated Optics Applications. , 1997, , 433-475.		О