
## Martin Zenke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2925292/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | CRISPR/Cas9 editing in conditionally immortalized HoxB8 cells for studying gene regulation in mouse dendritic cells. European Journal of Immunology, 2022, 52, 1859-1862.                                                   | 2.9  | 7         |
| 2  | Enhancement of proliferation of human umbilical cord blood–derived CD34+ hematopoietic stem<br>cells by a combination of hyper-interleukin-6 and small molecules. Biochemistry and Biophysics<br>Reports, 2022, 29, 101214. | 1.3  | 0         |
| 3  | The spatial self-organization within pluripotent stem cell colonies is continued in detaching aggregates. Biomaterials, 2022, 282, 121389.                                                                                  | 11.4 | 15        |
| 4  | PLA/Hydroxyapatite scaffolds exhibit in vitro immunological inertness and promote robust osteogenic<br>differentiation of human mesenchymal stem cells without osteogenic stimuli. Scientific Reports, 2022,<br>12, 2333.   | 3.3  | 67        |
| 5  | CRISPR/Cas9-engineered human ES cells harboring heterozygous and homozygous c-KIT knockout. Stem<br>Cell Research, 2022, 60, 102732.                                                                                        | 0.7  | 1         |
| 6  | Low Density Lipoprotein Exposure of Plasmacytoid Dendritic Cells Blunts Toll-like Receptor 7/9<br>Signaling via NUR77. Biomedicines, 2022, 10, 1152.                                                                        | 3.2  | 1         |
| 7  | Hematopoietic differentiation persists in human iPSCs defective in de novo DNA methylation. BMC<br>Biology, 2022, 20, .                                                                                                     | 3.8  | 3         |
| 8  | Lrig1- and Wnt-dependent niches dictate segregation of resident immune cells and melanocytes in murine tail epidermis. Development (Cambridge), 2022, 149, .                                                                | 2.5  | 1         |
| 9  | Functionalized Cellulose Nanocrystals for Cellular Labeling and Bioimaging. Biomacromolecules, 2021, 22, 454-466.                                                                                                           | 5.4  | 16        |
| 10 | LSP1â€myosin1e bimolecular complex regulates focal adhesion dynamics and cell migration. FASEB<br>Journal, 2021, 35, e21268.                                                                                                | 0.5  | 14        |
| 11 | Nintedanib targets KIT D816V neoplastic cells derived from induced pluripotent stem cells of systemic mastocytosis. Blood, 2021, 137, 2070-2084.                                                                            | 1.4  | 21        |
| 12 | Antimicrobially active gelatin/[Mg-Al-CO3]-LDH composite films based on clove essential oil for skin wound healing. Materials Today Communications, 2021, 27, 102169.                                                       | 1.9  | 11        |
| 13 | CRISPR/Cas9 mediated CXCL4 knockout in human iPS cells of polycythemia vera patient with JAK2 V617F<br>mutation. Stem Cell Research, 2021, 55, 102490.                                                                      | 0.7  | 2         |
| 14 | Guiding cell adhesion and motility by modulating cross-linking and topographic properties of microgel arrays. PLoS ONE, 2021, 16, e0257495.                                                                                 | 2.5  | 5         |
| 15 | CurauÃj-derived carbon dots: Fluorescent probes for effective Fe(III) ion detection, cellular labeling<br>and bioimaging. Materials Science and Engineering C, 2021, 129, 112409.                                           | 7.3  | 22        |
| 16 | CALR frameshift mutations in MPN patient-derived iPSCs accelerate maturation of megakaryocytes.<br>Stem Cell Reports, 2021, 16, 2768-2783.                                                                                  | 4.8  | 8         |
| 17 | Human DC3 Antigen Presenting Dendritic Cells From Induced Pluripotent Stem Cells. Frontiers in Cell<br>and Developmental Biology, 2021, 9, 667304.                                                                          | 3.7  | 2         |
| 18 | Hypoxia-inducible factor 1 (HIF-1) is a new therapeutic target in JAK2V617F-positive myeloproliferative neoplasms. Leukemia, 2020, 34, 1062-1074.                                                                           | 7.2  | 42        |

| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Human pluripotent stem cell line (HDZi001-A) derived from a patient carrying the ARVC-5 associated mutation TMEM43-p.S358L. Stem Cell Research, 2020, 48, 101957.                                    | 0.7  | 6         |
| 20 | Human ES cell-derived dendritic cells: Meeting the challenge of immune rejection in allogeneic cell therapy. EBioMedicine, 2020, 62, 103144.                                                         | 6.1  | 2         |
| 21 | PRDM8 reveals aberrant DNA methylation in aging syndromes and is relevant for hematopoietic and neuronal differentiation. Clinical Epigenetics, 2020, 12, 125.                                       | 4.1  | 20        |
| 22 | Human sensory neurons derived from pluripotent stem cells for disease modelling and personalized medicine. Neurobiology of Pain (Cambridge, Mass ), 2020, 8, 100055.                                 | 2.5  | 27        |
| 23 | The StemCellFactory: A Modular System Integration for Automated Generation and Expansion of<br>Human Induced Pluripotent Stem Cells. Frontiers in Bioengineering and Biotechnology, 2020, 8, 580352. | 4.1  | 28        |
| 24 | The curious case of Merkel cell carcinoma: epigenetic youth and lack of pluripotency. Epigenetics, 2020, 15, 1319-1324.                                                                              | 2.7  | 7         |
| 25 | Genetic barcoding reveals clonal dominance in iPSC-derived mesenchymal stromal cells. Stem Cell<br>Research and Therapy, 2020, 11, 105.                                                              | 5.5  | 13        |
| 26 | Navitoclax combined with Alpelisib effectively inhibits Merkel cell carcinoma cell growth <i>in vitro</i> . Therapeutic Advances in Medical Oncology, 2020, 12, 175883592097562.                     | 3.2  | 9         |
| 27 | Tracking of epigenetic changes during hematopoietic differentiation of induced pluripotent stem cells. Clinical Epigenetics, 2019, 11, 19.                                                           | 4.1  | 11        |
| 28 | Identification of transcription factor binding sites using ATAC-seq. Genome Biology, 2019, 20, 45.                                                                                                   | 8.8  | 346       |
| 29 | The role of Nav1.7 in human nociceptors: insights from human induced pluripotent stem cell–derived sensory neurons of erythromelalgia patients. Pain, 2019, 160, 1327-1341.                          | 4.2  | 74        |
| 30 | Sequential BMP7/TGF-β1 signaling and microbiota instruct mucosal Langerhans cell differentiation.<br>Journal of Experimental Medicine, 2018, 215, 481-500.                                           | 8.5  | 52        |
| 31 | Does soft really matter? Differentiation of induced pluripotent stem cells into mesenchymal stromal cells is not influenced by soft hydrogels. Biomaterials, 2018, 156, 147-158.                     | 11.4 | 27        |
| 32 | Control of Dynamically Inherent Biological Processes in Cell Technolog. , 2018, , .                                                                                                                  |      | 2         |
| 33 | Neuroendocrine Key Regulator Gene Expression in Merkel Cell Carcinoma. Neoplasia, 2018, 20, 1227-1235.                                                                                               | 5.3  | 16        |
| 34 | Implication of Hypoxia-Inducible Factor-1 (HIF-1) As a New Therapeutic Target in JAK2V617F Positive<br>Myeloproliferative Neoplasms (MPN). Blood, 2018, 132, 4318-4318.                              | 1.4  | 1         |
| 35 | Phosphatidylinositol 3-kinase p110δ expression in Merkel cell carcinoma. Oncotarget, 2018, 9,<br>29565-29573.                                                                                        | 1.8  | 5         |
| 36 | Variants of <i>DNMT3A</i> cause transcript-specific DNA methylation patterns and affect hematopoiesis. Life Science Alliance, 2018, 1, e201800153.                                                   | 2.8  | 16        |

| #  | Article                                                                                                                                                                                                            | IF                | CITATIONS     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|
| 37 | Characterization of Hematopoietic Differentiation Profiles of MPN Patient-Derived Inducible<br>Pluripotent Stem Cells Harboring Homozygous Vs Heterozygous Calreticulin Mutations. Blood, 2018,<br>132, 3065-3065. | 1.4               | 0             |
| 38 | Solution blow spinning fibres: New immunologically inert substrates for the analysis of cell adhesion and motility. Acta Biomaterialia, 2017, 51, 161-174.                                                         | 8.3               | 27            |
| 39 | Modelling IRF8 Deficient Human Hematopoiesis and Dendritic Cell Development with Engineered iPS<br>Cells. Stem Cells, 2017, 35, 898-908.                                                                           | 3.2               | 52            |
| 40 | The spleen microenvironment influences disease transformation in a mouse model of KITD816V-dependent myeloproliferative neoplasm. Scientific Reports, 2017, 7, 41427.                                              | 3.3               | 5             |
| 41 | Astrocytic Calcium Waves Signal Brain Injury to Neural Stem andÂProgenitorÂCells. Stem Cell Reports,<br>2017, 8, 701-714.                                                                                          | 4.8               | 18            |
| 42 | Human pluripotent stem cell-derived acinar/ductal organoids generate human pancreas upon orthotopic transplantation and allow disease modelling. Gut, 2017, 66, 473-486.                                           | 12.1              | 174           |
| 43 | Stem cells: from biomedical research towards clinical applications. Journal of Molecular Medicine, 2017, 95, 683-685.                                                                                              | 3.9               | 2             |
| 44 | Surface Topography Guides Morphology and Spatial Patterning of Induced Pluripotent Stem Cell<br>Colonies. Stem Cell Reports, 2017, 9, 654-666.                                                                     | 4.8               | 120           |
| 45 | Differentiation of Human Induced Pluripotent Stem Cells (iPS Cells) and Embryonic Stem Cells (ES) Tj ETQq1 1                                                                                                       | 0.784314 ı<br>0.4 | rgBŢ  Overloc |
| 46 | Principal components analysis and the reported low intrinsic dimensionality of gene expression microarray data. Scientific Reports, 2016, 6, 25696.                                                                | 3.3               | 72            |
| 47 | Novel platform for fully automated generation and expansion of highly standardized iPS cells.<br>Journal of Biotechnology, 2016, 231, S33-S34.                                                                     | 3.8               | 2             |
| 48 | Tbx3 fosters pancreatic cancer growth by increased angiogenesis and activin/nodal-dependent induction of stemness. Stem Cell Research, 2016, 17, 367-378.                                                          | 0.7               | 27            |
| 49 | Surfaceâ€Grafted Nanogel Arrays Direct Cell Adhesion and Motility. Advanced Materials Interfaces, 2016, 3, 1600455.                                                                                                | 3.7               | 14            |
| 50 | Differential peak calling of ChIP-seq signals with replicates with THOR. Nucleic Acids Research, 2016,<br>44, gkw680.                                                                                              | 14.5              | 66            |
| 51 | Cell Motility: Surfaceâ€Grafted Nanogel Arrays Direct Cell Adhesion and Motility (Adv. Mater.) Tj ETQq1 1 0.78                                                                                                     | 4314.cgBT         | /Overlock 10  |
| 52 | Detection of Hot-Spot Mutations in Circulating Cell-Free DNA From Patients With Intraductal<br>Papillary Mucinous Neoplasms ofÂthe Pancreas. Gastroenterology, 2016, 151, 267-270.                                 | 1.3               | 76            |
| 53 | Analysis of computational footprinting methods for DNase sequencing experiments. Nature Methods, 2016, 13, 303-309.                                                                                                | 19.0              | 141           |
| 54 | Epigenetic Classification of Human Mesenchymal Stromal Cells. Stem Cell Reports, 2016, 6, 168-175.                                                                                                                 | 4.8               | 47            |

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | GAR22β regulates cell migration, sperm motility, and axoneme structure. Molecular Biology of the Cell, 2016, 27, 277-294.                                                                                       | 2.1  | 15        |
| 56 | In vitro generation of functional dendritic cells differentiated from CD34 negative cells isolated from human umbilical cord blood. Cell Biology International, 2015, 39, 1080-1086.                            | 3.0  | 3         |
| 57 | Ablation of CD8α+ dendritic cell mediated cross-presentation does not impact atherosclerosis in hyperlipidemic mice. Scientific Reports, 2015, 5, 15414.                                                        | 3.3  | 19        |
| 58 | PRC2 inhibition counteracts the culture-associated loss of engraftment potential of human cord blood-derived hematopoietic stem and progenitor cells. Scientific Reports, 2015, 5, 12319.                       | 3.3  | 5         |
| 59 | A Dynamic Role of TBX3 in the Pluripotency Circuitry. Stem Cell Reports, 2015, 5, 1155-1170.                                                                                                                    | 4.8  | 57        |
| 60 | Functionality of insectâ€cellâ€derived colorectal cancer vaccine candidate protein<br><scp>E</scp> p <scp>CAMâ€F</scp> c in human dendritic cells. Entomological Research, 2015, 45, 162-166.                   | 1.1  | 3         |
| 61 | Dissecting Genomic Aberrations in Myeloproliferative Neoplasms by Multiplex-PCR and Next<br>Generation Sequencing. PLoS ONE, 2015, 10, e0123476.                                                                | 2.5  | 12        |
| 62 | Polyelectrolyte coating of ferumoxytol nanoparticles for labeling of dendritic cells. Journal of<br>Magnetism and Magnetic Materials, 2015, 380, 39-45.                                                         | 2.3  | 4         |
| 63 | Distinct Murine Mucosal Langerhans Cell Subsets Develop from Pre-dendritic Cells and Monocytes.<br>Immunity, 2015, 43, 369-381.                                                                                 | 14.3 | 78        |
| 64 | Loss of ATM accelerates pancreatic cancer formation and epithelial–mesenchymal transition. Nature Communications, 2015, 6, 7677.                                                                                | 12.8 | 90        |
| 65 | A time frame permissive for Protein Kinase D2 activity to direct angiogenesis in mouse embryonic stem cells. Scientific Reports, 2015, 5, 11742.                                                                | 3.3  | 7         |
| 66 | Crucial role for the LSP1–myosin1e bimolecular complex in the regulation of Fcγ receptor–driven phagocytosis. Molecular Biology of the Cell, 2015, 26, 1652-1664.                                               | 2.1  | 28        |
| 67 | Epigenetic Biomarker to Support Classification into Pluripotent and Non-Pluripotent Cells. Scientific Reports, 2015, 5, 8973.                                                                                   | 3.3  | 49        |
| 68 | Sca-1+Linâ^'CD117â^' Mesenchymal Stem/Stromal Cells Induce the Generation of Novel IRF8-Controlled<br>Regulatory Dendritic Cells through Notch–RBP-J Signaling. Journal of Immunology, 2015, 194,<br>4298-4308. | 0.8  | 22        |
| 69 | Epigenetic program and transcription factor circuitry of dendritic cell development. Nucleic Acids<br>Research, 2015, 43, gkv1056.                                                                              | 14.5 | 62        |
| 70 | The clash of Langerhans cell homeostasis in skin: Should I stay or should I go?. Seminars in Cell and<br>Developmental Biology, 2015, 41, 30-38.                                                                | 5.0  | 40        |
| 71 | Polycomb Protein EED is Required for Silencing of Pluripotency Genes upon ESC Differentiation. Stem Cell Reviews and Reports, 2015, 11, 50-61.                                                                  | 5.6  | 31        |
| 72 | Reduced Immunogenicity of Induced Pluripotent Stem Cells Derived from Sertoli Cells. PLoS ONE, 2014,<br>9, e106110.                                                                                             | 2.5  | 16        |

| #  | Article                                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Dendritic cell development requires histone deacetylase activity. European Journal of Immunology,<br>2014, 44, 2478-2488.                                                                                                                                                              | 2.9  | 36        |
| 74 | Cell Fusion Enhances Mesendodermal Differentiation of Human Induced Pluripotent Stem Cells. Stem<br>Cells and Development, 2014, 23, 2875-2882.                                                                                                                                        | 2.1  | 6         |
| 75 | Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biology, 2014, 15, R24.                                                                                                                                                                       | 9.6  | 709       |
| 76 | Matrix elasticity, replicative senescence and DNA methylation patterns of mesenchymal stem cells.<br>Biomaterials, 2014, 35, 6351-6358.                                                                                                                                                | 11.4 | 62        |
| 77 | Two-photon laser scanning microscopy as a useful tool for imaging and evaluating macrophage-, IL-4 activated macrophage- and osteoclast-based <i>In Vitro</i> degradation of beta-tricalcium phosphate bone substitute material. Microscopy Research and Technique, 2014, 77, 143-152. | 2.2  | 3         |
| 78 | Detecting differential peaks in ChIP-seq signals with ODIN. Bioinformatics, 2014, 30, 3467-3475.                                                                                                                                                                                       | 4.1  | 36        |
| 79 | Epigenetic Rejuvenation of Mesenchymal Stromal Cells Derived from Induced Pluripotent Stem Cells.<br>Stem Cell Reports, 2014, 3, 414-422.                                                                                                                                              | 4.8  | 192       |
| 80 | The Polycomb Protein Ezh2 Impacts on Induced Pluripotent Stem Cell Generation. Stem Cells and Development, 2014, 23, 931-940.                                                                                                                                                          | 2.1  | 52        |
| 81 | Detection of active transcription factor binding sites with the combination of DNase hypersensitivity and histone modifications. Bioinformatics, 2014, 30, 3143-3151.                                                                                                                  | 4.1  | 109       |
| 82 | TGF-Î <sup>2</sup> stimulation in human and murine cells reveals commonly affected biological processes and pathways at transcription level. BMC Systems Biology, 2014, 8, 55.                                                                                                         | 3.0  | 33        |
| 83 | Ovine Carotid Artery-Derived Cells as an Optimized Supportive Cell Layer in 2-D Capillary Network<br>Assays. PLoS ONE, 2014, 9, e91664.                                                                                                                                                | 2.5  | 0         |
| 84 | <i>Ex vivo</i> expansion of cord blood-CD34 <sup>+</sup> cells using IGFBP <sub>2</sub> and Angptl-5<br>impairs short-term lymphoid repopulation <i>in vivo</i> . Journal of Tissue Engineering and<br>Regenerative Medicine, 2013, 7, 944-954.                                        | 2.7  | 6         |
| 85 | Integrin <i>α</i> 4 impacts on differential adhesion of preadipocytes and stem cells on synthetic polymers. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 312-323.                                                                                                 | 2.7  | 5         |
| 86 | Activation of IL-1β and TNFα genes is mediated by the establishment of permissive chromatin structures during monopoiesis. Immunobiology, 2013, 218, 860-868.                                                                                                                          | 1.9  | 8         |
| 87 | Two-Dimensional Polymer-Based Cultures Expand Cord Blood-Derived Hematopoietic Stem Cells and Support Engraftment of NSG Mice. Tissue Engineering - Part C: Methods, 2013, 19, 25-38.                                                                                                  | 2.1  | 6         |
| 88 | Induced Pluripotent Mesenchymal Stromal Cell Clones Retain Donor-derived Differences in DNA<br>Methylation Profiles. Molecular Therapy, 2013, 21, 240-250.                                                                                                                             | 8.2  | 54        |
| 89 | TBX3 Directs Cell-Fate Decision toward Mesendoderm. Stem Cell Reports, 2013, 1, 248-265.                                                                                                                                                                                               | 4.8  | 72        |
| 90 | Automatic Production of Induced Pluripotent Stem Cells. Procedia CIRP, 2013, 5, 2-6.                                                                                                                                                                                                   | 1.9  | 34        |

| #   | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | The dark side of hematopoietic stem cell expansion - in vitro culture entails specific<br>DNA-hypermethylation which seems to be relevant for loss of stem cell function. Experimental<br>Hematology, 2013, 41, S26. | 0.4  | 0         |
| 92  | Expansion and Differentiation of Germline-Derived Pluripotent Stem Cells on Biomaterials. Tissue<br>Engineering - Part A, 2013, 19, 1067-1080.                                                                       | 3.1  | 4         |
| 93  | Pluripotent stem cells escape from senescence-associated DNA methylation changes. Genome Research, 2013, 23, 248-259.                                                                                                | 5.5  | 107       |
| 94  | Hematopoietic Stem and Progenitor Cells Acquire Distinct DNA-Hypermethylation During in vitro Culture. Scientific Reports, 2013, 3, 3372.                                                                            | 3.3  | 31        |
| 95  | TGFβ1 microenvironment determines dendritic cell development. OncoImmunology, 2013, 2, e23083.                                                                                                                       | 4.6  | 10        |
| 96  | Parthenogenetic stem cells for tissue-engineered heart repair. Journal of Clinical Investigation, 2013, 123, 1285-1298.                                                                                              | 8.2  | 96        |
| 97  | To Clone or Not to Clone? Induced Pluripotent Stem Cells Can Be Generated in Bulk Culture. PLoS<br>ONE, 2013, 8, e65324.                                                                                             | 2.5  | 41        |
| 98  | TGF-beta1 Does Not Induce Senescence of Multipotent Mesenchymal Stromal Cells and Has Similar Effects in Early and Late Passages. PLoS ONE, 2013, 8, e77656.                                                         | 2.5  | 30        |
| 99  | Analysis of Genome-Wide DNA Methylation Profiles by BeadChip Technology. Methods in Molecular<br>Biology, 2013, 1049, 21-33.                                                                                         | 0.9  | 2         |
| 100 | Age-Associated DNA Methylation Signature Reveals Premature Aging In Patients With Aplastic Anemia<br>and Dyskeratosis Congenita Which Correlates With Telomere Shortening. Blood, 2013, 122, 1223-1223.              | 1.4  | 2         |
| 101 | Dissecting Genomic Aberrations In CML and Bcr-Abl Negative Myeloproliferative Neoplasms By The Use Of Multiplex-PCR and Parallel Resequencing. Blood, 2013, 122, 1612-1612.                                          | 1.4  | 0         |
| 102 | Hematopoietic Interferon Regulatory Factor 8-Deficiency Accelerates Atherosclerosis in Mice.<br>Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1613-1623.                                             | 2.4  | 42        |
| 103 | Auto-Antigenic Protein-DNA Complexes Stimulate Plasmacytoid Dendritic Cells to Promote Atherosclerosis. Circulation, 2012, 125, 1673-1683.                                                                           | 1.6  | 347       |
| 104 | Polycomb Group Protein Bmi1 Promotes Hematopoietic Cell Development from Embryonic Stem Cells.<br>Stem Cells and Development, 2012, 21, 121-132.                                                                     | 2.1  | 22        |
| 105 | Two Distinct Types of Langerhans Cells Populate the Skin during Steady State and Inflammation.<br>Immunity, 2012, 37, 905-916.                                                                                       | 14.3 | 176       |
| 106 | Polyelectrolyte coating of iron oxide nanoparticles for MRI-based cell tracking. Nanomedicine:<br>Nanotechnology, Biology, and Medicine, 2012, 8, 682-691.                                                           | 3.3  | 35        |
| 107 | Dendritic cell lineage commitment is instructed by distinct cytokine signals. European Journal of Cell<br>Biology, 2012, 91, 515-523.                                                                                | 3.6  | 18        |
| 108 | Synergistic effects of growth factors and mesenchymal stromal cells for expansion of hematopoietic stem and progenitor cells. Experimental Hematology, 2011, 39, 617-628.                                            | 0.4  | 74        |

| #   | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Interleukin 32 promotes hematopoietic progenitor expansion and attenuates bone marrow cytotoxicity. European Journal of Immunology, 2011, 41, 1774-1786.                                                       | 2.9  | 11        |
| 110 | CCL17-expressing dendritic cells drive atherosclerosis by restraining regulatory T cell homeostasis in mice. Journal of Clinical Investigation, 2011, 121, 2898-2910.                                          | 8.2  | 223       |
| 111 | The role of multiple toll-like receptor signalling cascades on interactions between biomedical polymers and dendritic cells. Biomaterials, 2010, 31, 5759-5771.                                                | 11.4 | 72        |
| 112 | Neural Induction Intermediates Exhibit Distinct Roles of Fgf Signaling. Stem Cells, 2010, 28, 1772-1781.                                                                                                       | 3.2  | 35        |
| 113 | Activated Notch1 Target Genes during Embryonic Cell Differentiation Depend on the Cellular Context and Include Lineage Determinants and Inhibitors. PLoS ONE, 2010, 5, e11481.                                 | 2.5  | 84        |
| 114 | TGF-β1 Accelerates Dendritic Cell Differentiation from Common Dendritic Cell Progenitors and Directs<br>Subset Specification toward Conventional Dendritic Cells. Journal of Immunology, 2010, 185, 5326-5335. | 0.8  | 50        |
| 115 | GAR22: A novel target gene of thyroid hormone receptor causes growth inhibition in human erythroid cells. Experimental Hematology, 2009, 37, 539-548.e4.                                                       | 0.4  | 13        |
| 116 | Synthetic and biogenic magnetite nanoparticles for tracking of stem cells and dendritic cells. Journal of Magnetism and Magnetic Materials, 2009, 321, 1533-1538.                                              | 2.3  | 41        |
| 117 | Oct4-Induced Pluripotency in Adult Neural Stem Cells. Cell, 2009, 136, 411-419.                                                                                                                                | 28.9 | 858       |
| 118 | Pluripotency Associated Genes Are Reactivated by Chromatin-Modifying Agents in Neurosphere Cells.<br>Stem Cells, 2008, 26, 920-926.                                                                            | 3.2  | 85        |
| 119 | Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors.<br>Nature, 2008, 454, 646-650.                                                                                  | 27.8 | 890       |
| 120 | Gene Arrays for Gene Discovery. , 2008, , 23-36.                                                                                                                                                               |      | 0         |
| 121 | Transforming growth factor β1 up-regulates interferon regulatory factor 8 during dendritic cell development. European Journal of Immunology, 2007, 37, 1174-1183.                                              | 2.9  | 17        |
| 122 | Uptake of magnetic nanoparticles into cells for cell tracking. Journal of Magnetism and Magnetic<br>Materials, 2007, 311, 234-237.                                                                             | 2.3  | 43        |
| 123 | Immunization with a Lentiviral Vector Stimulates both CD4 and CD8 T Cell Responses to an Ovalbumin<br>Transgene. Molecular Therapy, 2006, 13, 310-319.                                                         | 8.2  | 102       |
| 124 | Towards an understanding of the transcription factor network of dendritic cell development. Trends<br>in Immunology, 2006, 27, 140-145.                                                                        | 6.8  | 57        |
| 125 | Genomics of TGF-β1 signaling in stem cell commitment and dendritic cell development. Cellular<br>Immunology, 2006, 244, 116-120.                                                                               | 3.0  | 7         |
| 126 | In vivo haematopoietic activity is induced in neurosphere cells by chromatin-modifying agents. EMBO<br>Journal, 2005, 24, 554-566.                                                                             | 7.8  | 42        |

| #   | Article                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | RNA transfer and its use in dendritic cell-based immunotherapy. Expert Opinion on Biological Therapy, 2005, 5, 173-181.                                                                       | 3.1  | 6         |
| 128 | Progressive and Controlled Development of Mouse Dendritic Cells from Flt3+CD11b+ Progenitors In Vitro. Journal of Immunology, 2005, 174, 2552-2562.                                           | 0.8  | 49        |
| 129 | Infection of mature dendritic cells with herpes simplex virus type 1 dramatically reduces lymphoid chemokine-mediated migration. Journal of General Virology, 2005, 86, 1645-1657.            | 2.9  | 82        |
| 130 | RNA-containing adenovirus/polyethylenimine transfer complexes effectively transduce dendritic cells and induce antigen-specific T cell responses. Journal of Gene Medicine, 2004, 6, 464-470. | 2.8  | 7         |
| 131 | Gene expression profiling of dendritic cells by DNA microarrays. Immunobiology, 2004, 209, 155-161.                                                                                           | 1.9  | 12        |
| 132 | Differentiation of Human Antigen-Presenting Dendritic Cells from CD34+ Hematopoietic Stem Cells In<br>Vitro. , 2003, 215, 399-408.                                                            |      | 11        |
| 133 | Towards determining the differentiation program of antigen-presenting dendritic cells by transcriptional profiling. European Journal of Cell Biology, 2003, 82, 75-86.                        | 3.6  | 28        |
| 134 | Transcriptional profiling identifies Id2 function in dendritic cell development. Nature Immunology, 2003, 4, 380-386.                                                                         | 14.5 | 469       |
| 135 | Mannose receptor-mediated gene delivery into antigen presenting dendritic cells. Somatic Cell and<br>Molecular Genetics, 2002, 27, 65-74.                                                     | 0.7  | 58        |
| 136 | The impact of c-met/scatter factor receptor on dendritic cell migration. European Journal of Immunology, 2002, 32, 1832.                                                                      | 2.9  | 52        |
| 137 | The fibroblast growth factor receptor FGFR-4 acts as a ligand dependent modulator of erythroid cell proliferation. Oncogene, 1999, 18, 5904-5914.                                             | 5.9  | 19        |
| 138 | Efficient Gene Delivery into Human Dendritic Cells by Adenovirus Polyethylenimine and Mannose<br>Polyethylenimine Transfection. Human Gene Therapy, 1999, 10, 775-786.                        | 2.7  | 99        |
| 139 | Mannose Polyethylenimine Conjugates for Targeted DNA Delivery into Dendritic Cells. Journal of<br>Biological Chemistry, 1999, 274, 19087-19094.                                               | 3.4  | 225       |
| 140 | Dendritic cell progenitor is transformed by a conditional v-Rel estrogen receptor fusion protein v-RelER. Cell, 1995, 80, 341-352.                                                            | 28.9 | 64        |