Rosa Puertollano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2924928/publications.pdf

Version: 2024-02-01

83 papers 16,735 citations

50566 48 h-index 84 g-index

114 all docs

114 docs citations

times ranked

114

28915 citing authors

#	Article	IF	CITATIONS
1	HSP90 inhibitors induce GPNMB cell-surface expression by modulating lysosomal positioning and sensitize breast cancer cells to glembatumumab vedotin. Oncogene, 2022, 41, 1701-1717.	2.6	8
2	The FACT complex facilitates expression of lysosomal and antioxidant genes through binding to TFEB and TFE3. Autophagy, 2022, 18, 2333-2349.	4.3	9
3	How Lysosomes Sense, Integrate, and Cope with Stress. Trends in Biochemical Sciences, 2021, 46, 97-112.	3.7	84
4	Impaired autophagy: The collateral damage of lysosomal storage disorders. EBioMedicine, 2021, 63, 103166.	2.7	36
5	Chemoenzymatic glycan-selective remodeling of a therapeutic lysosomal enzyme with high-affinity M6P-glycan ligands. Enzyme substrate specificity is the name of the game. Chemical Science, 2021, 12, 12451-12462.	3.7	5
6	A conserved cysteineâ€based redox mechanism sustains TFEB/HLHâ€30 activity under persistent stress. EMBO Journal, 2021, 40, e105793.	3.5	22
7	New therapies for Pompe disease: are we closer to a cure?. Lancet Neurology, The, 2021, 20, 973-975.	4.9	3
8	TRPML2 is an osmo/mechanosensitive cation channel in endolysosomal organelles. Science Advances, 2020, 6, .	4.7	28
9	Enzyme Replacement Therapy Can Reverse Pathogenic Cascade in Pompe Disease. Molecular Therapy - Methods and Clinical Development, 2020, 18, 199-214.	1.8	26
10	SnapShot: Lysosomal Storage Diseases. Cell, 2020, 180, 602-602.e1.	13.5	16
11	GPCRs join the mTORC1 regulatory network. Nature Cell Biology, 2019, 21, 538-539.	4.6	3
12	The Transcription Factors TFEB and TFE3 Link the FLCN-AMPK Signaling Axis to Innate Immune Response and Pathogen Resistance. Cell Reports, 2019, 26, 3613-3628.e6.	2.9	91
13	Improved efficacy of a next-generation ERT in murine Pompe disease. JCI Insight, 2019, 4, .	2.3	57
14	Editorial for focused issue "Pompe disease: from basics to current and emerging therapies― Annals of Translational Medicine, 2019, 7, 275-275.	0.7	1
15	Lysosome enlargement during inhibition of the lipid kinase PIKfyve proceeds through lysosome coalescence. Journal of Cell Science, 2018, 131, .	1.2	86
16	Emerging roles for TFEB in the immune response and inflammation. Autophagy, 2018, 14, 181-189.	4.3	118
17	Therapeutic Benefit of Autophagy Modulation in Pompe Disease. Molecular Therapy, 2018, 26, 1783-1796.	3.7	46
18	The complex relationship between <scp>TFEB</scp> transcription factor phosphorylation and subcellular localization. EMBO Journal, 2018, 37, .	3.5	332

#	Article	IF	CITATIONS
19	Protein phosphatase 2A stimulates activation of TFEB and TFE3 transcription factors in response to oxidative stress. Journal of Biological Chemistry, 2018, 293, 12525-12534.	1.6	101
20	Dynamic MTORC1-TFEB feedback signaling regulates hepatic autophagy, steatosis and liver injury in long-term nutrient oversupply. Autophagy, 2018, 14, 1779-1795.	4.3	53
21	Pompe Disease: From Basic Science to Therapy. Neurotherapeutics, 2018, 15, 928-942.	2.1	127
22	Pompe disease: how to solve many problems with one solution. Annals of Translational Medicine, 2018, 6, 313-313.	0.7	6
23	Selective agonist of TRPML2 reveals direct role in chemokine release from innate immune cells. ELife, 2018, 7, .	2.8	71
24	The transcription factors TFE3 and TFEB amplify p53 dependent transcriptional programs in response to DNA damage. ELife, 2018, 7, .	2.8	69
25	The amino acid transporter SLC36A4 regulates the amino acid pool in retinal pigmented epithelial cells and mediates the mechanistic target of rapamycin, complex 1 signaling. Aging Cell, 2017, 16, 349-359.	3.0	32
26	Modulation of <scp>mTOR</scp> signaling as a strategy for the treatment of Pompe disease. EMBO Molecular Medicine, 2017, 9, 353-370.	3.3	83
27	Novel degenerative and developmental defects in a zebrafish model of mucolipidosis type IV. Human Molecular Genetics, 2017, 26, 2701-2718.	1.4	16
28	<i> $>$ N $<$ /i> $<$ (1-Benzyl-3,5-dimethyl-1 $<$ i> $>$ H $<$ /i> $>$ -pyrazol-4-yl)benzamides: Antiproliferative Activity and Effects on mTORC1 and Autophagy. ACS Medicinal Chemistry Letters, 2017, 8, 90-95.	1.3	12
29	TFEB and TFE3: The art of multi-tasking under stress conditions. Transcription, 2017, 8, 48-54.	1.7	32
30	Atg5flox-Derived Autophagy-Deficient Model of Pompe Disease: Does It Tell the Whole Story?. Molecular Therapy - Methods and Clinical Development, 2017, 7, 11-14.	1.8	12
31	TFEB regulates lysosomal positioning by modulating TMEM55B expression and JIP4 recruitment to lysosomes. Nature Communications, 2017, 8, 1580.	5.8	135
32	The tumor suppressor FLCN mediates an alternate mTOR pathway to regulate browning of adipose tissue. Genes and Development, 2016, 30, 2551-2564.	2.7	100
33	TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy, 2016, 12, 1240-1258.	4.3	230
34	Rags to riches: Amino acid sensing by the Rag GTPases in health and disease. Small GTPases, 2016, 7, 197-206.	0.7	12
35	<scp>TFEB</scp> and <scp>TFE</scp> 3 are novel components of the integrated stress response. EMBO Journal, 2016, 35, 479-495.	3.5	237
36	TFEB and TFE3: Linking Lysosomes to Cellular Adaptation to Stress. Annual Review of Cell and Developmental Biology, 2016, 32, 255-278.	4.0	308

#	Article	IF	CITATIONS
37	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
38	Novel Role of TRPML2 in the Regulation of the Innate Immune Response. Journal of Immunology, 2015, 195, 4922-4932.	0.4	69
39	mTOR and lysosome regulation. F1000prime Reports, 2014, 6, 52.	5.9	106
40	The Nutrient-Responsive Transcription Factor TFE3 Promotes Autophagy, Lysosomal Biogenesis, and Clearance of Cellular Debris. Science Signaling, 2014, 7, ra9.	1.6	486
41	Novel roles for the MiTF/TFE family of transcription factors in organelle biogenesis, nutrient sensing, and energy homeostasis. Cellular and Molecular Life Sciences, 2014, 71, 2483-2497.	2.4	135
42	Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease. EMBO Molecular Medicine, 2013, 5, 691-706.	3.3	273
43	Rag GTPases mediate amino acid–dependent recruitment of TFEB and MITF to lysosomes. Journal of Cell Biology, 2013, 200, 475-491.	2.3	278
44	What else is in store for autophagy? Exocytosis of autolysosomes as a mechanism of TFEB-mediated cellular clearance in Pompe disease. Autophagy, 2013, 9, 1117-1118.	4.3	34
45	RRAG GTPases link nutrient availability to gene expression, autophagy and lysosomal biogenesis. Autophagy, 2013, 9, 928-930.	4.3	18
46	Autophagy in lysosomal storage disorders. Autophagy, 2012, 8, 719-730.	4.3	345
47	MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy, 2012, 8, 903-914.	4.3	983
48	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
49	Transcriptional Activation of Lysosomal Exocytosis Promotes Cellular Clearance. Developmental Cell, 2011, 21, 421-430.	3.1	594
50	Role of TRP Channels in the Regulation of the Endosomal Pathway. Physiology, 2011, 26, 14-22.	1.6	60
51	LAPTMs regulate lysosomal function and interact with mucolipin 1: new clues for understanding mucolipidosis type IV. Journal of Cell Science, 2011, 124, 459-468.	1.2	55
52	Mucolipin-3 Regulates Luminal Calcium, Acidification, and Membrane Fusion in the Endosomal Pathway. Journal of Biological Chemistry, 2011, 286, 9826-9832.	1.6	67
53	Disruption of the Murine $\langle i \rangle$ Ap2 $\hat{i}^2 1 \langle j \rangle$ Gene Causes Nonsyndromic Cleft Palate. Cleft Palate-Craniofacial Journal, 2010, 47, 566-573.	0.5	19
54	Identification of the Penta-EF-hand Protein ALG-2 as a Ca2+-dependent Interactor of Mucolipin-1. Journal of Biological Chemistry, 2009, 284, 36357-36366.	1.6	77

#	Article	IF	CITATIONS
55	TRPMLs: in sickness and in health. American Journal of Physiology - Renal Physiology, 2009, 296, F1245-F1254.	1.3	100
56	STAM Adaptor Proteins Interact with COPII Complexes and Function in ERâ€toâ€Golgi Trafficking. Traffic, 2009, 10, 201-217.	1.3	19
57	The Calcium Channel Mucolipinâ€3 is a Novel Regulator of Trafficking Along the Endosomal Pathway. Traffic, 2009, 10, 1143-1156.	1.3	81
58	Mucolipidosis type IV: The importance of functional lysosomes for efficient autophagy. Autophagy, 2008, 4, 832-834.	4. 3	29
59	Autophagic dysfunction in mucolipidosis type IV patients. Human Molecular Genetics, 2008, 17, 2723-2737.	1.4	163
60	An essential role for the MAL protein in targeting Lck to the plasma membrane of human T lymphocytes. Journal of Experimental Medicine, 2008, 205, 3201-3213.	4.2	70
61	Mucolipinâ€2 Localizes to the Arf6â€Associated Pathway and Regulates Recycling of GPIâ€APs. Traffic, 2007, 8, 1404-1414.	1.3	73
62	Dynamics of MAL2 During Glycosylphosphatidylinositol-Anchored Protein Transcytotic Transport to the Apical Surface of Hepatoma HepG2 Cells. Traffic, 2006, 7, 61-73.	1.3	26
63	Two Di-Leucine Motifs Regulate Trafficking of Mucolipin-1 to Lysosomes. Traffic, 2006, 7, 337-353.	1.3	154
64	Activation of p38 Mitogen-Activated Protein Kinase Promotes Epidermal Growth Factor Receptor Internalization. Traffic, 2006, 7, 686-698.	1.3	85
65	Interactions of TOM1L1 with the Multivesicular Body Sorting Machinery. Journal of Biological Chemistry, 2005, 280, 9258-9264.	1.6	77
66	The Trihelical Bundle Subdomain of the GGA Proteins Interacts with Multiple Partners through Overlapping but Distinct Sites. Journal of Biological Chemistry, 2004, 279, 31409-31418.	1.6	33
67	Interactions of GGA3 with the ubiquitin sorting machinery. Nature Cell Biology, 2004, 6, 244-251.	4.6	218
68	Arf Regulates Interaction of GGA with Mannose-6-Phosphate Receptor. Traffic, 2003, 4, 26-35.	1.3	24
69	Morphology and Dynamics of Clathrin/GGA1-coated Carriers Budding from theTrans-Golgi Network. Molecular Biology of the Cell, 2003, 14, 1545-1557.	0.9	115
70	Enthoprotin. Journal of Cell Biology, 2002, 158, 855-862.	2.3	182
71	Structural basis for acidic-cluster-dileucine sorting-signal recognition by VHS domains. Nature, 2002, 415, 933-937.	13.7	161
72	Phosphoregulation of sorting signal–VHS domain interactions by a direct electrostatic mechanism. Nature Structural Biology, 2002, 9, 532-6.	9.7	44

#	Article	IF	CITATIONS
73	The GGAs Promote ARF-Dependent Recruitment of Clathrin to the TGN. Cell, 2001, 105, 93-102.	13.5	245
74	BENE, a Novel Raft-associated Protein of the MAL Proteolipid Family, Interacts with Caveolin-1 in Human Endothelial-like ECV304 Cells. Journal of Biological Chemistry, 2001, 276, 23009-23017.	1.6	45
75	Ggas. Journal of Cell Biology, 2000, 149, 81-94.	2.3	385
76	The MAL Proteolipid Is Necessary for Normal Apical Transport and Accurate Sorting of the Influenza Virus Hemagglutinin in Madin-Darby Canine Kidney Cells. Journal of Cell Biology, 1999, 145, 141-151.	2.3	161
77	Targeting of MAL, a Putative Element of the Apical Sorting Machinery, to Glycolipid-Enriched Membranes Requires a Pre-Golgi Sorting Event. Biochemical and Biophysical Research Communications, 1999, 254, 689-692.	1.0	15
78	Substitution of the Two Carboxyl-terminal Serines by Alanine Causes Retention of MAL, a Component of the Apical Sorting Machinery, in the Endoplasmic Reticulum. Biochemical and Biophysical Research Communications, 1999, 260, 188-192.	1.0	6
79	Incorporation of MAL, an Integral Protein Element of the Machinery for the Glycolipid and Cholesterol-Mediated Apical Pathway of Transport, into Artificial Membranes Requires Neither of These Lipid Species. Biochemical and Biophysical Research Communications, 1999, 266, 330-333.	1.0	11
80	A Short Peptide Motif at the Carboxyl Terminus Is Required for Incorporation of the Integral Membrane MAL Protein to Glycolipid-enriched Membranes. Journal of Biological Chemistry, 1998, 273, 12740-12745.	1.6	26
81	Recombinant Expression of the MAL Proteolipid, a Component of Glycolipid-enriched Membrane Microdomains, Induces the Formation of Vesicular Structures in Insect Cells. Journal of Biological Chemistry, 1997, 272, 18311-18315.	1.6	49
82	Structural and Biochemical Similarities Reveal a Family of Proteins Related to the MAL Proteolipid, a Component of Detergent-Insoluble Membrane Microdomains. Biochemical and Biophysical Research Communications, 1997, 232, 618-621.	1.0	46
83	Caveolin and MAL, Two Protein Components of Internal Detergent-Insoluble Membranes, Are in Distinct Lipid Microenvironments in MDCK Cells. Biochemical and Biophysical Research Communications, 1997, 233, 707-712.	1.0	43