Jianguang Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2923834/publications.pdf Version: 2024-02-01

Ιμνομανό Χιι

#	Article	IF	CITATIONS
1	Surface oxygen-deficient Ti2SC for enhanced lithium-ion uptake. Chinese Chemical Letters, 2023, 34, 107500.	9.0	3
2	A comparative study of iron-vanadium and all-vanadium flow battery for large scale energy storage. Chemical Engineering Journal, 2022, 429, 132403.	12.7	34
3	Towards an universal artificial synapse using MXene-PZT based ferroelectric memristor. Ceramics International, 2022, 48, 16263-16272.	4.8	15
4	Enhancements of thermoelectric performance in n-type Bi2Te3-based nanocomposites through incorporating 2D Mxenes. Journal of the European Ceramic Society, 2022, 42, 4587-4593.	5.7	8
5	Lithium-ions uptake by MAX/graphene hybrid. , 2022, 7, 59-71.		1
6	Inserted Effects of MXene on Switching Mechanisms and Characteristics of SiO ₂ -Based Memristor: Experimental and First-Principles Investigations. IEEE Transactions on Electron Devices, 2022, 69, 3688-3693.	3.0	3
7	First-Principles Calculation and Experimental Investigation of a Three-Atoms-Type MXene V ₂ C and Its Effects on Memristive Devices. IEEE Nanotechnology Magazine, 2021, 20, 512-516.	2.0	6
8	Intercalation and delamination of Ti ₂ SnC with high lithium ion storage capacity. Nanoscale, 2021, 13, 7355-7361.	5.6	22
9	Polypyrrole Nanotube Sponge Host for Stable Lithium-Metal Batteries under Lean Electrolyte Conditions. ACS Sustainable Chemistry and Engineering, 2021, 9, 2543-2551.	6.7	11
10	Vâ,,C-Based Memristor for Applications of Low Power Electronic Synapse. IEEE Electron Device Letters, 2021, 42, 319-322.	3.9	21
11	Preparation of TiSi2 Powders with Enhanced Lithium-Ion Storage via Chemical Oven Self-Propagating High-Temperature Synthesis. Nanomaterials, 2021, 11, 2279.	4.1	1
12	GO-Ti3C2 two-dimensional heterojunction nanomaterial for anticorrosion enhancement of epoxy zinc-rich coatings. Journal of Hazardous Materials, 2021, 417, 126048.	12.4	83
13	Emulation of multiple-functional synapses using V2C memristors with coexistence of resistive and threshold switching. Materials Science in Semiconductor Processing, 2021, 135, 106123.	4.0	12
14	Analysis and optimization for multi-stack vanadium flow battery module incorporating electrode permeability. Journal of Power Sources, 2021, 515, 230606.	7.8	10
15	Artificial Neurons Based on Ag/V2C/W Threshold Switching Memristors. Nanomaterials, 2021, 11, 2860.	4.1	21
16	Formation of Ti3Sn(1-x)AlxC2 Powder by Self-Propagating High Temperature Synthesis. Journal of Materials Engineering and Performance, 2021, 30, 9008.	2.5	0
17	Ti3Si0.75Al0.25C2 Nanosheets as Promising Anode Material for Li-Ion Batteries. Nanomaterials, 2021, 11, 3449.	4.1	7
18	Ferroelectric Memristors Based Hardware of Brain Functions for Future Artificial Intelligence. Journal of Physics: Conference Series, 2020, 1631, 012042.	0.4	3

JIANGUANG XU

#	Article	IF	CITATIONS
19	Demonstration of 2D MXene memristor: Stability, conduction mechanism, and synaptic plasticity. Materials Letters, 2020, 266, 127413.	2.6	22
20	Electrical Properties and Biological Synaptic Simulation of Ag/MXene/SiO2/Pt RRAM Devices. Electronics (Switzerland), 2020, 9, 2098.	3.1	25
21	Unsupervised Learning Implemented by Ti ₃ C ₂ -MXene-Based Memristive Neuromorphic System. ACS Applied Electronic Materials, 2020, 2, 3497-3501.	4.3	11
22	Achieving high yield of Ti3C2T MXene few-layer flakes with enhanced pseudocapacior performance by decreasing precursor size. Chinese Chemical Letters, 2020, 31, 1039-1043.	9.0	20
23	Synthesis of Novel Macromolecular Coupling Agent and its Application in Nano-Copper Lubricating Oil. Current Nanoscience, 2020, 16, 253-258.	1.2	1
24	Resistance switching characteristics and mechanisms of MXene/SiO2 structure-based memristor. Applied Physics Letters, 2019, 115, .	3.3	39
25	Formation of new MXene film using spinning coating method with DMSO solution and its application in advanced memristive device. Ceramics International, 2019, 45, 19467-19472.	4.8	37
26	Realization of Artificial Neuron Using MXene Bi-Directional Threshold Switching Memristors. IEEE Electron Device Letters, 2019, 40, 1686-1689.	3.9	61
27	General Synthesis of Uniform Three-Dimensional Metal Oxides/Reduced Graphene Oxide Aerogels by a Nucleation-Inducing Growth Strategy for High-Performance Lithium Storage. ACS Sustainable Chemistry and Engineering, 2019, 7, 847-857.	6.7	16
28	Layered BiOBr/Ti3C2 MXene composite with improved visible-light photocatalytic activity. Journal of Materials Science, 2019, 54, 2458-2471.	3.7	108
29	Preparation of nanocrystalline MoSi2 with enhanced lithium storage by sol–gel and carbonthermal reduction method. Ceramics International, 2018, 44, 9494-9498.	4.8	4
30	Ultrathin MXene nanosheets with rich fluorine termination groups realizing efficient electrocatalytic hydrogen evolution. Nano Energy, 2018, 47, 512-518.	16.0	243
31	Two-dimensional holey ZnFe2O4 nanosheet/reduced graphene oxide hybrids by self-link of nanoparticles for high-rate lithium storage. Electrochimica Acta, 2018, 292, 390-398.	5.2	22
32	Pseudocapacitive Lithium Storage in Threeâ€Dimensional Cobaltâ€Doped MnO/Nitrogenâ€Doped Reduced Graphene Oxide Aerogels as Highâ€Rate Anode Material. ChemElectroChem, 2018, 5, 3419-3425.	3.4	5
33	Mesoporous Hierarchical Structure of Li ₄ Ti ₅ O ₁₂ /Graphene with High Electrochemical Performance in Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 11360-11366.	6.7	24
34	Two-dimensional sulfur-doped Mn3O4 quantum dots/reduced graphene oxide nanosheets as high-rate anode materials for lithium storage. Ceramics International, 2018, 44, 21734-21741.	4.8	14
35	Synthesis and excellent visible light photocatalysis performance of magnetic reduced graphene oxide/ZnO/ZnFe ₂ O ₄ composites. RSC Advances, 2017, 7, 23246-23254.	3.6	32
36	Preparation and Characterization of (Mo, W)Si2-SiC Composites by In Situ Microwave Reaction Sintering. Journal of Materials Engineering and Performance, 2017, 26, 3239-3244.	2.5	4

JIANGUANG XU

#	Article	IF	CITATIONS
37	Micro…Mesoporous Zinc–Manganese Oxide/Graphene Hybrids with High Specific Surface Area: A Highâ€Capacity, Superiorâ€Rate, and Ultralongâ€Life Anode for Lithium Storage. ChemElectroChem, 2017, 4, 230-235.	3.4	9
38	Synthesis, Characterization, and Microwave Absorption Properties of Reduced Graphene Oxide/Strontium Ferrite/Polyaniline Nanocomposites. Nanoscale Research Letters, 2016, 11, 141.	5.7	184
39	In situ reactive spark plasma sintering of WSi2/MoSi2 composites. Ceramics International, 2016, 42, 11165-11169.	4.8	24
40	Demonstration of Li-Ion Capacity of MAX Phases. ACS Energy Letters, 2016, 1, 1094-1099.	17.4	57
41	Strongly coupled hybrid ZnCo2O4 quantum dots/reduced graphene oxide with high-performance lithium storage capability. Electrochimica Acta, 2016, 210, 783-791.	5.2	21
42	Preparation and Characterization of MoSi ₂ /WSi ₂ Composites from MASHSed Powder. Materials Transactions, 2015, 56, 313-316.	1.2	10
43	Synthesis and microwave absorption properties of reduced graphene oxide-magnetic porous nanospheres-polyaniline composites. Composites Science and Technology, 2015, 117, 315-321.	7.8	141
44	Preparation of reduced graphene oxide/flake carbonyl iron powders/polyaniline composites and their enhanced microwave absorption properties. Journal of Alloys and Compounds, 2015, 636, 310-316.	5.5	100
45	Chemically Integrated Multiwalled Carbon Nanotubes/Zinc Manganate Nanocrystals as Ultralong-Life Anode Materials for Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2015, 3, 2170-2177.	6.7	34
46	Core–shell photoanode developed by atomic layer deposition of Bi ₂ O ₃ on Si nanowires for enhanced photoelectrochemical water splitting. Nanotechnology, 2014, 25, 455402.	2.6	33
47	Synthesis of hierarchical Bi ₂ O ₃ /Bi ₄ Ti ₃ O ₁₂ p–n junction nanoribbons on carbon fibers from (001) facet dominated TiO ₂ nanosheets. RSC Advances, 2014 4 56682-56689	3.6	31
48	Hierarchical structures constructed by BiOX (XÂ=ÂCl, I) nanosheets on CNTs/carbon composite fibers for improved photocatalytic degradation of methyl orange. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	32
49	Friction and wear behavior of polytetrafluoroethene composites filled with Ti3SiC2. Materials & Design, 2014, 61, 270-274.	5.1	24
50	Effects of Y2O3 on SiC/MoSi2 composite by mechanical-assistant combustion synthesis. International Journal of Refractory Metals and Hard Materials, 2013, 36, 143-148.	3.8	9
51	Ultrathin Nanosheets of MAX Phases with Enhanced Thermal and Mechanical Properties in Polymeric Compositions: Ti ₃ Si _{0.75} Al _{0.25} C ₂ . Angewandte Chemie - International Edition, 2013, 52, 4361-4365.	13.8	113
52	In-situ preparation of SiC–MoSi2 composite by microwave reaction sintering. Ceramics International, 2012, 38, 6895-6898.	4.8	10
53	In situ pressureless sintering of SiC/MoSi2 composites. Ceramics International, 2012, 38, 2767-2772.	4.8	17
54	Synthesis and Catalytic Properties of Au–Pd Nanoflowers. ACS Nano, 2011, 5, 6119-6127.	14.6	163

JIANGUANG XU

#	Article	IF	CITATIONS
55	Synthesis of MoSi2/WSi2 nanocrystalline powder by mechanical-assistant combustion synthesis method. International Journal of Refractory Metals and Hard Materials, 2010, 28, 217-220.	3.8	32
56	Room temperature mechanical properties and high temperature oxidation behavior of MoSi2 matrix composite reinforced by adding La2O3 and Mo5Si3. Materials Characterization, 2009, 60, 447-450.	4.4	21
57	Preparation and characterization of SiC/(Mo,W)Si2 composites from powders resulting from a SHS in a chemical oven. International Journal of Refractory Metals and Hard Materials, 2009, 27, 74-77.	3.8	11
58	Preparation of MoSi2/SiC composite by mechanical-assistant combustion synthesis method. Journal of Alloys and Compounds, 2009, 487, 326-330.	5.5	7
59	Cyclic oxidation behaviors of MoSi2 with different relative density. Journal Wuhan University of Technology, Materials Science Edition, 2008, 23, 699-703.	1.0	2
60	In situ synthesis of SiCW/MoSi2 composite through SPS process. Journal of Alloys and Compounds, 2008, 462, 170-174.	5.5	8
61	Numerical Simulation of Zr66Al8Cu7Ni19Preparation Process. Materials and Manufacturing Processes, 2008, 23, 533-538.	4.7	1
62	Effect of argon atmosphere on the formation of MoSi2 by self-propagating combustion method. International Journal of Refractory Metals and Hard Materials, 2007, 25, 318-321.	3.8	12
63	Fabrication and characterization of SiCw/MoSi2 composite from COSHSed powder. Journal of Materials Science, 2007, 42, 5795-5798.	3.7	6
64	Pressureless sintering of TiN/Y-(α/β)-sialon ceramics from SHS powder. Ceramics International, 2006, 32, 599-602.	4.8	3
65	Synthesis of SiCw/MoSi2 powder by the "chemical oven―self-propagating combustion method. Ceramics International, 2006, 32, 633-636.	4.8	17
66	Title is missing!. Journal of Materials Science Letters, 2003, 22, 163-165.	0.5	2
67	Synthesis of lead sulfide/(polyvinyl acetate) nanocomposites with controllable morphology. Chemical Physics Letters, 2000, 321, 504-507.	2.6	53
68	Synthesis of CdS/polyacrylonitrile nanocomposites by Î ³ -irradiation. Materials Research Bulletin, 2000, 35, 1355-1360.	5.2	18
69	Synthesis of nanocrystalline Cu _{2 –} <i>_×</i> Se at room temperature by γ-irradiation. Canadian Journal of Chemistry, 2000, 78, 1143-1146.	1.1	24