
Daizo Koinuma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/292370/publications.pdf Version: 2024-02-01

Πλίζο Κοινιμμα

#	Article	IF	CITATIONS
1	TGF-Î ² drives epithelial-mesenchymal transition through δEF1-mediated downregulation of ESRP. Oncogene, 2012, 31, 3190-3201.	5.9	199
2	Arkadia amplifies TGF-Â superfamily signalling through degradation of Smad7. EMBO Journal, 2003, 22, 6458-6470.	7.8	195
3	ChIP-seq reveals cell type-specific binding patterns of BMP-specific Smads and a novel binding motif. Nucleic Acids Research, 2011, 39, 8712-8727.	14.5	186
4	Chromatin Immunoprecipitation on Microarray Analysis of Smad2/3 Binding Sites Reveals Roles of ETS1 and TFAP2A in Transforming Growth Factor β Signaling. Molecular and Cellular Biology, 2009, 29, 172-186.	2.3	179
5	Arkadia Induces Degradation of SnoN and c-Ski to Enhance Transforming Growth Factor-β Signaling. Journal of Biological Chemistry, 2007, 282, 20492-20501.	3.4	148
6	TGF-β-induced epithelial-mesenchymal transition of A549 lung adenocarcinoma cells is enhanced by pro-inflammatory cytokines derived from RAW 264.7 macrophage cells. Journal of Biochemistry, 2012, 151, 205-216.	1.7	117
7	Intracellular and extracellular TGF-β signaling in cancer: some recent topics. Frontiers of Medicine, 2018, 12, 387-411.	3.4	108
8	<scp>ZEB</scp> 1â€regulated inflammatory phenotype in breast cancer cells. Molecular Oncology, 2017, 11, 1241-1262.	4.6	100
9	TUFT1 interacts with RABGAP1 and regulates mTORC1 signaling. Cell Discovery, 2018, 4, 1.	6.7	97
10	Pin1 Down-regulates Transforming Growth Factor-β (TGF-β) Signaling by Inducing Degradation of Smad Proteins. Journal of Biological Chemistry, 2009, 284, 6109-6115.	3.4	93
11	Genome-wide mechanisms of Smad binding. Oncogene, 2013, 32, 1609-1615.	5.9	88
12	Tumor-promoting functions of transforming growth factor-β in progression of cancer. Upsala Journal of Medical Sciences, 2012, 117, 143-152.	0.9	87
13	Specific interactions between Smad proteins and AP-1 components determine TGFÎ ² -induced breast cancer cell invasion. Oncogene, 2013, 32, 3606-3615.	5.9	84
14	Transforming growth factor- \hat{l}^2 decreases the cancer-initiating cell population within diffuse-type gastric carcinoma cells. Oncogene, 2011, 30, 1693-1705.	5.9	77
15	JUNB governs a feed-forward network of TGFβ signaling that aggravates breast cancer invasion. Nucleic Acids Research, 2018, 46, 1180-1195.	14.5	77
16	Hepatocyte Growth Factor Gene Transfer to Alveolar Septa for Effective Suppression of Lung Fibrosis. Molecular Therapy, 2005, 12, 58-67.	8.2	74
17	SKI and MEL1 Cooperate to Inhibit Transforming Growth Factor-β Signal in Gastric Cancer Cells. Journal of Biological Chemistry, 2009, 284, 3334-3344.	3.4	74
18	Smurf2 Induces Ubiquitin-dependent Degradation of Smurf1 to Prevent Migration of Breast Cancer Cells. Journal of Biological Chemistry, 2008, 283, 35660-35667.	3.4	73

DAIZO ΚΟΙΝUMA

#	Article	IF	CITATIONS
19	Transforming growth factorâ€Î²â€induced lnc <scp>RNA</scp> â€5mad7 inhibits apoptosis of mouse breast cancer Jyg <scp>MC</scp> (A) cells. Cancer Science, 2014, 105, 974-982.	3.9	65
20	Promoterâ€wide analysis of Smad4 binding sites in human epithelial cells. Cancer Science, 2009, 100, 2133-2142.	3.9	61
21	BMP Sustains Embryonic Stem Cell Self-Renewal through Distinct Functions of Different Krüppel-like Factors. Stem Cell Reports, 2016, 6, 64-73.	4.8	61
22	Pancreatic tumor microenvironment confers highly malignant properties on pancreatic cancer cells. Oncogene, 2018, 37, 2757-2772.	5.9	61
23	RNA-binding motif protein 47 inhibits Nrf2 activity to suppress tumor growth in lung adenocarcinoma. Oncogene, 2016, 35, 5000-5009.	5.9	59
24	Long noncoding <scp>RNA </scp> <i><scp>NORAD</scp></i> regulates transforming growth factorâ€Î² signaling and epithelialâ€ŧoâ€mesenchymal transitionâ€like phenotype. Cancer Science, 2018, 109, 2211-2220.	3.9	55
25	Transforming Growth Factor-Î ² Induces Transcription Factors MafK and Bach1 to Suppress Expression of the Heme Oxygenase-1 Gene. Journal of Biological Chemistry, 2013, 288, 20658-20667.	3.4	50
26	Smad4 Decreases the Population of Pancreatic Cancer–Initiating Cells through Transcriptional Repression of ALDH1A1. American Journal of Pathology, 2015, 185, 1457-1470.	3.8	50
27	A Smad3 and TTF-1/NKX2-1 complex regulates Smad4-independent gene expression. Cell Research, 2014, 24, 994-1008.	12.0	45
28	The Arkadia-ESRP2 axis suppresses tumor progression: analyses in clear-cell renal cell carcinoma. Oncogene, 2016, 35, 3514-3523.	5.9	42
29	Cell Type-specific Target Selection by Combinatorial Binding of Smad2/3 Proteins and Hepatocyte Nuclear Factor 41± in HepG2 Cells. Journal of Biological Chemistry, 2011, 286, 29848-29860.	3.4	38
30	Successful Treatment of a Case with Rapidly Progressive Bronchiolitis Obliterans Organizing Pneumonia (BOOP) using Cyclosporin A and Corticosteroid Internal Medicine, 2002, 41, 26-29.	0.7	37
31	Ras and TGF-β signaling enhance cancer progression by promoting the ΔNp63 transcriptional program. Science Signaling, 2016, 9, ra84.	3.6	33
32	Mutational Landscape and Antiproliferative Functions of ELF Transcription Factors in Human Cancer. Cancer Research, 2016, 76, 1814-1824.	0.9	31
33	RB1CC1 Protein Positively Regulates Transforming Growth Factor-Î ² Signaling through the Modulation of Arkadia E3 Ubiquitin Ligase Activity. Journal of Biological Chemistry, 2011, 286, 32502-32512.	3.4	30
34	Bone morphogenetic protein signaling mediated by ALK-2 and DLX2 regulates apoptosis in glioma-initiating cells. Oncogene, 2017, 36, 4963-4974.	5.9	30
35	Targeting all transforming growth factor-Î ² isoforms with an Fc chimeric receptor impairs tumor growth and angiogenesis of oral squamous cell cancer. Journal of Biological Chemistry, 2020, 295, 12559-12572.	3.4	30
36	Context-dependent regulation of the expression of c-Ski protein by Arkadia in human cancer cells. Journal of Biochemistry, 2010, 147, 545-554.	1.7	29

DAIZO KOINUMA

#	Article	IF	CITATIONS
37	The ALK-1/SMAD/ATOH8 axis attenuates hypoxic responses and protects against the development of pulmonary arterial hypertension. Science Signaling, 2019, 12, .	3.6	24
38	Dynamics of chromatin accessibility during TGF-β-induced EMT of Ras-transformed mammary gland epithelial cells. Scientific Reports, 2017, 7, 1166.	3.3	22
39	Comparative analysis of TTFâ€1 binding DNA regions in smallâ€cell lung cancer and nonâ€smallâ€cell lung cancer. Molecular Oncology, 2020, 14, 277-293.	4.6	22
40	Structure of a dominant-negative helix-loop-helix transcriptional regulator suggests mechanisms of autoinhibition. EMBO Journal, 2012, 31, 2541-2552.	7.8	17
41	Palbociclib enhances activinâ€ <scp>SMAD</scp> â€induced cytostasis in estrogen receptorâ€positive breast cancer. Cancer Science, 2019, 110, 209-220.	3.9	17
42	Arkadia-beyond the TGF-Â pathway. Journal of Biochemistry, 2011, 149, 1-3.	1.7	16
43	Antiâ€pyroptotic function of TGFâ€Î² is suppressed by a synthetic dsRNA analogue in triple negative breast cancer cells. Molecular Oncology, 2021, 15, 1289-1307.	4.6	14
44	Arkadia represses the expression of myoblast differentiation markers through degradation of Ski and the Ski-bound Smad complex in C2C12 myoblasts. Bone, 2009, 44, 53-60.	2.9	13
45	Identification of a novel fusion gene <i>HMGA2â€EGFR</i> in glioblastoma. International Journal of Cancer, 2018, 142, 1627-1639.	5.1	12
46	Systemic administration of monovalent follistatin-like 3-Fc-fusion protein increases muscle mass in mice. IScience, 2021, 24, 102488.	4.1	12
47	PRRX1 induced by BMP signaling decreases tumorigenesis by epigenetically regulating gliomaâ€initiating cell properties via DNA methyltransferase 3A. Molecular Oncology, 2022, 16, 269-288.	4.6	5
48	Polyl:C attenuates transforming growth factorâ€Î² signaling to induce cytostasis of surrounding cells by secreted factors in tripleâ€negative breast cancer. Cancer Science, 2022, 113, 940-949.	3.9	2