Kirsten C Sadler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2922037/publications.pdf

Version: 2024-02-01

72 papers

4,930 citations

35 h-index 95266 68 g-index

77 all docs

77 docs citations

times ranked

77

7408 citing authors

#	Article	IF	CITATIONS
1	Conservation and divergence of methylation patterning in plants and animals. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8689-8694.	7.1	1,160
2	Many Ribosomal Protein Genes Are Cancer Genes in Zebrafish. PLoS Biology, 2004, 2, e139.	5.6	368
3	UHRF1 Overexpression Drives DNA Hypomethylation and Hepatocellular Carcinoma. Cancer Cell, 2014, 25, 196-209.	16.8	261
4	Zebrafish: An Important Tool for Liver Disease Research. Gastroenterology, 2015, 149, 1361-1377.	1.3	211
5	New school in liver development: Lessons from zebrafish. Hepatology, 2009, 50, 1656-1663.	7.3	178
6	Hepatic steatosis in response to acute alcohol exposure in zebrafish requires sterol regulatory element binding protein activation. Hepatology, 2009, 49, 443-452.	7.3	170
7	A genetic screen in zebrafish identifies the mutants vps18, nf2and foie gras as models of liver disease. Development (Cambridge), 2005, 132, 3561-3572.	2.5	162
8	Liver growth in the embryo and during liver regeneration in zebrafish requires the cell cycle regulator, <i>uhrf1</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1570-1575.	7.1	155
9	White adipose tissue development in zebrafish is regulated by both developmental time and fish size. Developmental Dynamics, 2010, 239, 3013-3023.	1.8	111
10	Activating transcription factor 6 plays protective and pathological roles in steatosis due to endoplasmic reticulum stress in zebrafish. Hepatology, 2011, 54, 495-508.	7.3	101
11	Endothelial Signals Modulate Hepatocyte Apicobasal Polarization in Zebrafish. Current Biology, 2008, 18, 1565-1571.	3.9	94
12	UHRF1 depletion causes a G2/M arrest, activation of DNA damage response and apoptosis. Biochemical Journal, 2011, 435, 175-185.	3.7	89
13	Covalent Organic Framework Embedded with Magnetic Nanoparticles for MRI and Chemo-Thermotherapy. Journal of the American Chemical Society, 2020, 142, 18782-18794.	13.7	89
14	Components of the Signaling Pathway Linking the 1-Methyladenine Receptor to MPF Activation and Maturation in Starfish Oocytes. Developmental Biology, 1998, 197, 25-38.	2.0	84
15	Ethanol metabolism and oxidative stress are required for unfolded protein response activation and steatosis in alcoholic liver disease. DMM Disease Models and Mechanisms, 2013, 6, 1213-26.	2.4	81
16	Lack of de novo phosphatidylinositol synthesis leads to endoplasmic reticulum stress and hepatic steatosis in cdipt-deficient zebrafish. Hepatology, 2011, 54, 452-462.	7.3	71
17	RAF1 mutations in childhood-onset dilated cardiomyopathy. Nature Genetics, 2014, 46, 635-639.	21.4	69
18	High resolution annotation of zebrafish transcriptome using long-read sequencing. Genome Research, 2018, 28, 1415-1425.	5.5	69

#	Article	IF	CITATIONS
19	DNA Methylation, Nuclear Organization, and Cancer. Frontiers in Genetics, 2017, 8, 76.	2.3	65
20	Activating Transcription Factor 6 Is Necessary and Sufficient for Alcoholic Fatty Liver Disease in Zebrafish. PLoS Genetics, 2014, 10, e1004335.	3.5	64
21	In vivo cell biology in zebrafish – providing insights into vertebrate development and disease. Journal of Cell Science, 2014, 127, 485-495.	2.0	60
22	The Role of Insulin Receptor Signaling in Zebrafish Embryogenesis. Endocrinology, 2008, 149, 5996-6005.	2.8	57
23	Defining Hepatic Dysfunction Parameters in Two Models of Fatty Liver Disease in Zebrafish Larvae. Zebrafish, 2013, 10, 199-210.	1.1	54
24	Making It New Again. Current Topics in Developmental Biology, 2017, 124, 161-195.	2.2	54
25	Loss of DNA methylation in zebrafish embryos activates retrotransposons to trigger antiviral signaling. Development (Cambridge), 2017, 144, 2925-2939.	2.5	53
26	Drinks Like a Fish: Using Zebrafish to Understand Alcoholic Liver Disease. Alcoholism: Clinical and Experimental Research, 2011, 35, 826-829.	2.4	50
27	DNA hypomethylation induces a DNA replication-associated cell cycle arrest to block hepatic outgrowth in <i>uhrf1</i> mutant zebrafish embryos. Development (Cambridge), 2015, 142, 510-21.	2.5	49
28	Epigenetic Compensation Promotes Liver Regeneration. Developmental Cell, 2019, 50, 43-56.e6.	7.0	49
29	Alcohol Disrupts Endoplasmic Reticulum Function and Protein Secretion in Hepatocytes. Alcoholism: Clinical and Experimental Research, 2012, 36, 14-23.	2.4	47
30	Molecularly defined unfolded protein response subclasses have distinct correlations with fatty liver disease in zebrafish. DMM Disease Models and Mechanisms, 2014, 7, 823-835.	2.4	47
31	A zebrafish model of PMM2-CDG reveals altered neurogenesis and a substrate-accumulation mechanism for N-linked glycosylation deficiency. Molecular Biology of the Cell, 2012, 23, 4175-4187.	2.1	44
32	Inbreeding Depression and Outbreeding Depression Are Evident in Wild-Type Zebrafish Lines. Zebrafish, 2010, 7, 189-197.	1.1	43
33	Comparative Epigenomic Profiling of the DNA Methylome in Mouse and Zebrafish Uncovers High Interspecies Divergence. Frontiers in Genetics, 2016, 7, 110.	2.3	42
34	UHRF1 phosphorylation by cyclin A2/cyclin-dependent kinase 2 is required for zebrafish embryogenesis. Molecular Biology of the Cell, 2012, 23, 59-70.	2.1	40
35	Epigenetics, development, and cancer: Zebrafish make their mark. Birth Defects Research Part C: Embryo Today Reviews, 2011, 93, 194-203.	3.6	37
36	Postmeiotic Unfertilized Starfish Eggs Die by Apoptosis. Developmental Biology, 2001, 237, 29-44.	2.0	36

#	Article	IF	CITATIONS
37	$\langle i \rangle$ trappc $11 < i \rangle$ is required for protein glycosylation in zebrafish and humans. Molecular Biology of the Cell, 2016, 27, 1220-1234.	2.1	36
38	Inorganic arsenic causes fatty liver and interacts with ethanol to cause alcoholic liver disease in zebrafish. DMM Disease Models and Mechanisms, 2018, 11 , .	2.4	36
39	Potent and selective <i>in vitro</i> and <i>in vivo</i> antiproliferative effects of metal–organic trefoil knots. Chemical Science, 2019, 10, 5884-5892.	7.4	35
40	A zebrafish model of congenital disorders of glycosylation with phosphomannose isomerase deficiency reveals an early opportunity for corrective mannose supplementation. DMM Disease Models and Mechanisms, 2013, 6, 95-105.	2.4	30
41	MPI depletion enhances O-GlcNAcylation of p53 and suppresses the Warburg effect. ELife, 2017, 6, .	6.0	30
42	Klf6/copeb is required for hepatic outgrowth in zebrafish and for hepatocyte specification in mouse ES cells. Developmental Biology, 2010, 344, 79-93.	2.0	28
43	Stress management: How the unfolded protein response impacts fatty liver disease. Journal of Hepatology, 2012, 57, 1147-1151.	3.7	28
44	MAP kinases regulate unfertilized egg apoptosis and fertilization suppresses death via Ca2+ signaling. Molecular Reproduction and Development, 2004, 67, 366-383.	2.0	27
45	UHRF1 regulation of Dnmt1 is required for pre-gastrula zebrafish development. Developmental Biology, 2016, 412, 99-113.	2.0	26
46	Starfish Oocytes Form Intracellular Ice at Unusually High Temperatures. Cryobiology, 2001, 43, 248-259.	0.7	23
47	Cryopreservation of starfish oocytes. Cryobiology, 2005, 50, 38-47.	0.7	21
48	Unraveling the Epigenetic Basis of Liver Development, Regeneration and Disease. Trends in Genetics, 2020, 36, 587-597.	6.7	21
49	Variant Histone H2afv reprograms DNA methylation during early zebrafish development. Epigenetics, 2017, 12, 811-824.	2.7	19
50	Arsenic induced redox imbalance triggers the unfolded protein response in the liver of zebrafish. Toxicology and Applied Pharmacology, 2020, 409, 115307.	2.8	18
51	Getting the Inside Tract: New Frontiers in Zebrafish Digestive System Biology. Zebrafish, 2013, 10, 129-131.	1.1	17
52	uhrf1 and dnmt1 Loss Induces an Immune Response in Zebrafish Livers Due to Viral Mimicry by Transposable Elements. Frontiers in Immunology, 2021, 12, 627926.	4.8	17
53	The Cx43-like Connexin Protein Cx40.8 Is Differentially Localized during Fin Ontogeny and Fin Regeneration. PLoS ONE, 2012, 7, e31364.	2.5	14
54	Chromatin states shaped by an epigenetic code confer regenerative potential to the mouse liver. Nature Communications, 2021, 12, 4110.	12.8	12

#	Article	IF	Citations
55	Casting a wide net: use of diverse model organisms to advance toxicology. DMM Disease Models and Mechanisms, 2020, 13 , .	2.4	11
56	ROS: Redux and paradox in fatty liver disease. Hepatology, 2013, 58, 1210-1212.	7.3	10
57	Zebrafish Discoveries in Cancer Epigenetics. Advances in Experimental Medicine and Biology, 2016, 916, 169-197.	1.6	10
58	A zebrafish retinal graded photochemical stress model. Journal of Pharmacological and Toxicological Methods, 2009, 59, 121-127.	0.7	8
59	Aqueous Synthesis of Triphenylphosphineâ€Modified Gold Nanoparticles for Synergistic In Vitro and In Vivo Photothermal Chemotherapy. Chemistry - A European Journal, 2020, 26, 5270-5279.	3.3	7
60	A permissive epigenetic landscape facilitates distinct transcriptional signatures of activating transcription factor 6 in the liver. Genomics, 2022, 114, 107-124.	2.9	7
61	Systematic Evaluation of the Effects of Toxicant Exposure on Survival in Zebrafish Embryos and Larvae. Current Protocols, 2021, 1, e231.	2.9	6
62	Localization of xenopsin and xenopsin precursor fragment immunoreactivities in the skin and gastrointestinal tract of Xenopus laevis. Cell and Tissue Research, 1992, 270, 257-263.	2.9	5
63	Nuclear Organization during Hepatogenesis in Zebrafish Requires Uhrf1. Genes, 2021, 12, 1081.	2.4	4
64	Manipulating and tracking single hepatocyte behavior during mouse liver regeneration by performing hydrodynamic tail vein injection. STAR Protocols, 2021, 2, 100440.	1.2	3
65	Supercritical CO2 Processing Generates Aqueous Cisplatin Solutions with Enhanced Cancer Specificity. ACS Omega, 2020, 5, 4558-4567.	3.5	2
66	Orchestrating cell division. Trends in Cell Biology, 2000, 10, 447-450.	7.9	1
67	Attention, neurons, this CDK could save your life!. Trends in Cell Biology, 2002, 12, 214.	7.9	1
68	MKKing the most of liver regeneration: An in vivo screen identifies the MKK4 pathway as a suppressor of regeneration. Hepatology, 2014, 59, 1201-1203.	7.3	1
69	Preface. Current Topics in Developmental Biology, 2017, 124, xi-xv.	2.2	1
70	An epigenetic perspective on liver regeneration. Epigenomics, 2020, 12, 381-384.	2.1	1
71	Ribosome assembly reawakens. Trends in Cell Biology, 2002, 12, 411.	7.9	0
72	Biochemical Characterization Of PMM2â€depleted Zebrafish Suggests An Unexpected Mechanism For Glycosylation Deficiency In CDGâ€la. FASEB Journal, 2012, 26, 794.3.	0.5	0