Cecilia B Moens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2921422/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Met is required for oligodendrocyte progenitor cell migration in <i>Danio rerio</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	4
2	The field of neurogenetics: where it stands and where it is going. Genetics, 2021, 218, .	1.2	2
3	The field of neurogenetics: where it stands and where it is going. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	0
4	Intrinsic positional memory guides target-specific axon regeneration in the zebrafish vagus nerve. Development (Cambridge), 2021, 148, .	1.2	11
5	Retinoic Acid Organizes the Zebrafish Vagus Motor Topographic Map via Spatiotemporal Coordination of Hgf/Met Signaling. Developmental Cell, 2020, 53, 344-357.e5.	3.1	24
6	PCP and Wnt pathway components act in parallel during zebrafish mechanosensory hair cell orientation. Nature Communications, 2019, 10, 3993.	5.8	38
7	Microtubules are required for the maintenance of planar cell polarity in monociliated floorplate cells. Developmental Biology, 2019, 452, 21-33.	0.9	7
8	Multiple zebrafish atoh1 genes specify a diversity of neuronal types in the zebrafish cerebellum. Developmental Biology, 2018, 438, 44-56.	0.9	22
9	Planar cell polarity in moving cells: think globally, act locally. Development (Cambridge), 2017, 144, 187-200.	1.2	109
10	Vagus Motor Neuron Topographic Map Determined by Parallel Mechanisms of hox5 Expression and Time of Axon Initiation. Current Biology, 2017, 27, 3812-3825.e3.	1.8	33
11	Rpgrip1 is required for rod outer segment development and ciliary protein trafficking in zebrafish. Scientific Reports, 2017, 7, 16881.	1.6	24
12	A genetic basis for molecular asymmetry at vertebrate electrical synapses. ELife, 2017, 6, .	2.8	42
13	Cilia-Associated Genes Play Differing Roles in Aminoglycoside-Induced Hair Cell Death in Zebrafish. G3: Genes, Genomes, Genetics, 2016, 6, 2225-2235.	0.8	22
14	Regulation of Vegf signaling by natural and synthetic ligands. Blood, 2016, 128, 2359-2366.	0.6	54
15	Approaching Perfection: New Developments in Zebrafish Genome Engineering. Developmental Cell, 2016, 36, 595-596.	3.1	7
16	Lysosomal Disorders Drive Susceptibility to Tuberculosis by Compromising Macrophage Migration. Cell, 2016, 165, 139-152.	13.5	117
17	PCP Signaling between Migrating Neurons and their Planar-Polarized Neuroepithelial Environment Controls Filopodial Dynamics and Directional Migration. PLoS Genetics, 2016, 12, e1005934.	1.5	39
18	The Ciliopathy Protein CC2D2A Associates with NINL and Functions in RAB8-MICAL3-Regulated Vesicle Trafficking, PLoS Genetics, 2015, 11, e1005575.	1.5	64

2

#	Article	IF	CITATIONS
19	Neurobeachin Is Required Postsynaptically for Electrical and Chemical Synapse Formation. Current Biology, 2015, 25, 16-28.	1.8	65
20	Distinct requirements for Wntless in habenular development. Developmental Biology, 2015, 406, 117-128.	0.9	22
21	Dachsous1b cadherin regulates actin and microtubule cytoskeleton during early zebrafish embryogenesis. Development (Cambridge), 2015, 142, 2704-18.	1.2	29
22	Rapid reverse genetic screening using CRISPR in zebrafish. Nature Methods, 2015, 12, 535-540.	9.0	330
23	Rapid identification and recovery of ENU-induced mutations with next-generation sequencing and Paired-End Low-Error analysis. BMC Genomics, 2015, 16, 83.	1.2	30
24	Notch3 establishes brain vascular integrity by regulating pericyte number. Development (Cambridge), 2014, 141, 307-317.	1.2	180
25	Distinct Notch signaling outputs pattern the developing arterial system. Development (Cambridge), 2014, 141, 1544-1552.	1.2	97
26	Role of mef2ca in developmental buffering of the zebrafish larval hyoid dermal skeleton. Developmental Biology, 2014, 385, 189-199.	0.9	29
27	Cerebellar development in the absence of Gbx function in zebrafish. Developmental Biology, 2014, 386, 181-190.	0.9	21
28	Hoxb1b controls oriented cell division, cell shape and microtubule dynamics in neural tube morphogenesis. Development (Cambridge), 2014, 141, 639-649.	1.2	22
29	Notch3 signaling gates cell cycle entry and limits neural stem cell amplification in the adult pallium. Development (Cambridge), 2013, 140, 3335-3347.	1.2	111
30	Wnt-Dependent Epithelial Transitions Drive Pharyngeal Pouch Formation. Developmental Cell, 2013, 24, 296-309.	3.1	71
31	RNA-seq–based mapping and candidate identification of mutations from forward genetic screens. Genome Research, 2013, 23, 679-686.	2.4	91
32	Retinal regeneration in adult zebrafish requires regulation of TGFÎ ² signaling. Glia, 2013, 61, 1687-1697.	2.5	101
33	<i>barx1</i> represses joints and promotes cartilage in the craniofacial skeleton. Development (Cambridge), 2013, 140, 2765-2775.	1.2	67
34	Tardbpl splicing rescues motor neuron and axonal development in a mutant tardbp zebrafish. Human Molecular Genetics, 2013, 22, 2376-2386.	1.4	32
35	The first mecp2-null zebrafish model shows altered motor behaviors. Frontiers in Neural Circuits, 2013, 7, 118.	1.4	60
36	sox9b Is a Key Regulator of Pancreaticobiliary Ductal System Development. PLoS Genetics, 2012, 8, e1002754.	1.5	107

#	Article	IF	CITATIONS
37	The differentiation and movement of presomitic mesoderm progenitor cells are controlled by Mesogenin 1. Development (Cambridge), 2012, 139, 4656-4665.	1.2	62
38	Zebrafish Mef2ca and Mef2cb are essential for both first and second heart field cardiomyocyte differentiation. Developmental Biology, 2012, 369, 199-210.	0.9	86
39	Regulation of intrahepatic biliary duct morphogenesis by Claudin 15-like b. Developmental Biology, 2012, 361, 68-78.	0.9	43
40	Differential regulation of epiboly initiation and progression by zebrafish Eomesodermin A. Developmental Biology, 2012, 362, 11-23.	0.9	39
41	Zebrafish sox9b is crucial for hepatopancreatic duct development and pancreatic endocrine cell regeneration. Developmental Biology, 2012, 366, 268-278.	0.9	67
42	Tdrd1 acts as a molecular scaffold for Piwi proteins and piRNA targets in zebrafish. EMBO Journal, 2011, 30, 3298-3308.	3.5	70
43	Defective cranial skeletal development, larval lethality and haploinsufficiency in Myod mutant zebrafish. Developmental Biology, 2011, 358, 102-112.	0.9	70
44	Zebrafish Neural Tube Morphogenesis Requires Scribble-Dependent Oriented Cell Divisions. Current Biology, 2011, 21, 79-86.	1.8	72
45	Planar polarity pathway and Nance-Horan syndrome-like 1b have essential cell-autonomous functions in neuronal migration. Development (Cambridge), 2011, 138, 3033-3042.	1.2	49
46	A novel role for MuSK and non-canonical Wnt signaling during segmental neural crest cell migration. Development (Cambridge), 2011, 138, 3287-3296.	1.2	60
47	The ciliopathy gene cc2d2a controls zebrafish photoreceptor outer segment development through a role in Rab8-dependent vesicle trafficking. Human Molecular Genetics, 2011, 20, 4041-4055.	1.4	106
48	Disc1 regulates both βâ€cateninâ€mediated and noncanonical Wnt signaling during vertebrate embryogenesis. FASEB Journal, 2011, 25, 4184-4197.	0.2	41
49	Asymmetric Inhibition of Ulk2 Causes Left-Right Differences in Habenular Neuropil Formation. Journal of Neuroscience, 2011, 31, 9869-9878.	1.7	22
50	Zebrafish Prickle1b mediates facial branchiomotor neuron migration via a farnesylation-dependent nuclear activity. Development (Cambridge), 2011, 138, 2121-2132.	1.2	43
51	A novel role for MuSK and non-canonical Wnt signaling during segmental neural crest cell migration. Journal of Cell Science, 2011, 124, e1-e1.	1.2	1
52	The neuroepithelial basement membrane serves as a boundary and a substrate for neuron migration in the zebrafish hindbrain. Neural Development, 2010, 5, 9.	1.1	42
53	The Ita4h Locus Modulates Susceptibility to Mycobacterial Infection in Zebrafish and Humans. Cell, 2010, 140, 717-730.	13.5	501
54	A G Protein–Coupled Receptor Is Essential for Schwann Cells to Initiate Myelination. Science, 2009, 325, 1402-1405.	6.0	298

4

#	Article	IF	CITATIONS
55	Zebrafish survival motor neuron mutants exhibit presynaptic neuromuscular junction defects. Human Molecular Genetics, 2009, 18, 3615-3625.	1.4	93
56	EphA4 and EfnB2a maintain rhombomere coherence by independently regulating intercalation of progenitor cells in the zebrafish neural keel. Developmental Biology, 2009, 327, 313-326.	0.9	62
57	Pbx acts with Hand2 in early myocardial differentiation. Developmental Biology, 2009, 333, 409-418.	0.9	49
58	Generating Chimeric Zebrafish Embryos by Transplantation. Journal of Visualized Experiments, 2009, , .	0.2	51
59	Making Gynogenetic Diploid Zebrafish by Early Pressure. Journal of Visualized Experiments, 2009, , .	0.2	13
60	A High-Throughput Method For Zebrafish Sperm Cryopreservation and In Vitro Fertilization. Journal of Visualized Experiments, 2009, , .	0.2	26
61	CC2D2A Is Mutated in Joubert Syndrome and Interacts with the Ciliopathy-Associated Basal Body Protein CEP290. American Journal of Human Genetics, 2008, 83, 559-571.	2.6	202
62	Whole Mount RNA In Situ Hybridization on Zebrafish Embryos: Hybridization. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5037.	0.2	17
63	Whole Mount RNA In Situ Hybridization on Zebrafish Embryos: Probe Synthesis. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5036.	0.2	14
64	Whole Mount RNA In Situ Hybridization on Zebrafish Embryos: Mounting. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5038.	0.2	16
65	Reverse genetics in zebrafish by TILLING. Briefings in Functional Genomics & Proteomics, 2008, 7, 454-459.	3.8	168
66	Cyp26 enzymes generate the retinoic acid response pattern necessary for hindbrain development. Development (Cambridge), 2007, 134, 177-187.	1.2	192
67	Neuropilin asymmetry mediates a left-right difference in habenular connectivity. Development (Cambridge), 2007, 134, 857-865.	1.2	50
68	Pbx homeodomain proteins direct Myod activity to promote fast-muscle differentiation. Development (Cambridge), 2007, 134, 3371-3382.	1.2	125
69	Pbx proteins cooperate with Engrailed to pattern the midbrain–hindbrain and diencephalic–mesencephalic boundaries. Developmental Biology, 2007, 301, 504-517.	0.9	36
70	nanos1 is required to maintain oocyte production in adult zebrafish. Developmental Biology, 2007, 305, 589-598.	0.9	145
71	Zebrafish bmp4 functions during late gastrulation to specify ventroposterior cell fates. Developmental Biology, 2007, 310, 71-84.	0.9	68
72	A Role for Piwi and piRNAs in Germ Cell Maintenance and Transposon Silencing in Zebrafish. Cell, 2007, 129, 69-82.	13.5	989

#	Article	IF	CITATIONS
73	Pbx homeodomain proteins pattern both the zebrafish retina and tectum. BMC Developmental Biology, 2007, 7, 85.	2.1	35
74	Hox cofactors in vertebrate development. Developmental Biology, 2006, 291, 193-206.	0.9	435
75	Modern mosaic analysis in the zebrafish. Methods, 2006, 39, 228-238.	1.9	51
76	EphA4 Is Required for Cell Adhesion and Rhombomere-Boundary Formation in the Zebrafish. Current Biology, 2005, 15, 536-542.	1.8	177
77	Zebrafishfoggy/spt5is required for migration of facial branchiomotor neurons but not for their survival. Developmental Dynamics, 2005, 234, 651-658.	0.8	18
78	Semaphorin signaling guides cranial neural crest cell migration in zebrafish. Developmental Biology, 2005, 280, 373-385.	0.9	127
79	vhnf1integrates global RA patterning and local FGF signals to direct posterior hindbrain development in zebrafish. Development (Cambridge), 2004, 131, 4511-4520.	1.2	102
80	A High-Throughput Method for Identifying N-Ethyl-N-Nitrosourea (ENU)-Induced Point Mutations in Zebrafish. Methods in Cell Biology, 2004, 77, 91-112.	0.5	98
81	Cloning and embryonic expression of zebrafish neuropilin genes. Gene Expression Patterns, 2004, 4, 371-378.	0.3	49
82	Autonomous and nonautonomous functions for Hox/Pbx in branchiomotor neuron development. Developmental Biology, 2003, 253, 200-213.	0.9	55
83	Eliminating Zebrafish Pbx Proteins Reveals a Hindbrain Ground State. Developmental Cell, 2002, 3, 723-733.	3.1	158
84	Boundary formation in the hindbrain: Eph only it were simple…. Trends in Neurosciences, 2002, 25, 260-267.	4.2	102
85	Constructing the hindbrain: Insights from the zebrafish. Developmental Dynamics, 2002, 224, 1-17.	0.8	196
86	Specification and Morphogenesis of the Zebrafish Larval Head Skeleton. Developmental Biology, 2001, 233, 239-257.	0.9	162
87	Zebrafish deadly seven Functions in Neurogenesis. Developmental Biology, 2001, 237, 306-323.	0.9	80
88	Zebrafish Meis functions to stabilize Pbx proteins and regulate hindbrain patterning. Development (Cambridge), 2001, 128, 4139-4151.	1.2	128
89	lazarus Is a Novel pbx Gene that Globally Mediates hox Gene Function in Zebrafish. Molecular Cell, 2000, 6, 255-267.	4.5	134
90	Chapter 14 Techniques in Neural Development. Methods in Cell Biology, 1998, 59, 253-272.	0.5	35