
Rohit Batra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2921255/publications.pdf Version: 2024-02-01

Ρομιτ Βλτρλ

#	Article	IF	CITATIONS
1	Learning in continuous action space for developing high dimensional potential energy models. Nature Communications, 2022, 13, 368.	12.8	21
2	Multi-reward Reinforcement Learning Based Bond-Order Potential to Study Strain-Assisted Phase Transitions in Phosphorene. Journal of Physical Chemistry Letters, 2022, 13, 1886-1893.	4.6	9
3	Machine learning the metastable phase diagram of covalently bonded carbon. Nature Communications, 2022, 13, .	12.8	9
4	Polymer design using genetic algorithm and machine learning. Computational Materials Science, 2021, 186, 110067.	3.0	105
5	Emerging materials intelligence ecosystems propelled by machine learning. Nature Reviews Materials, 2021, 6, 655-678.	48.7	138
6	Accurate machine learning in materials science facilitated by using diverse data sources. Nature, 2021, 589, 524-525.	27.8	29
7	Polymer informatics: Current status and critical next steps. Materials Science and Engineering Reports, 2021, 144, 100595.	31.8	117
8	Artificial Intelligence-Guided <i>De Novo</i> Molecular Design Targeting COVID-19. ACS Omega, 2021, 6, 12557-12566.	3.5	22
9	Learning with Delayed Rewards—A Case Study on Inverse Defect Design in 2D Materials. ACS Applied Materials & Interfaces, 2021, 13, 36455-36464.	8.0	12
10	A multi-fidelity information-fusion approach to machine learn and predict polymer bandgap. Computational Materials Science, 2020, 172, 109286.	3.0	49
11	Machine learning models for the prediction of energy, forces, and stresses for Platinum. Computational Materials Science, 2020, 174, 109483.	3.0	17
12	Prediction of water stability of metal–organic frameworks using machine learning. Nature Machine Intelligence, 2020, 2, 704-710.	16.0	89
13	Machine-learning predictions of polymer properties with Polymer Genome. Journal of Applied Physics, 2020, 128, .	2.5	111
14	Screening of Therapeutic Agents for COVID-19 Using Machine Learning and Ensemble Docking Studies. Journal of Physical Chemistry Letters, 2020, 11, 7058-7065.	4.6	82
15	Polymers for Extreme Conditions Designed Using Syntax-Directed Variational Autoencoders. Chemistry of Materials, 2020, 32, 10489-10500.	6.7	43
16	Frequency-dependent dielectric constant prediction of polymers using machine learning. Npj Computational Materials, 2020, 6, .	8.7	75
17	Predicting Crystallization Tendency of Polymers Using Multifidelity Information Fusion and Machine Learning. Journal of Physical Chemistry B, 2020, 124, 6046-6054.	2.6	35
18	Refractive index prediction models for polymers using machine learning. Journal of Applied Physics, 2020, 127, .	2.5	20

Rohit Batra

#	Article	IF	CITATIONS
19	Machine learning for multi-fidelity scale bridging and dynamical simulations of materials. JPhys Materials, 2020, 3, 031002.	4.2	11
20	Search for Ferroelectric Binary Oxides: Chemical and Structural Space Exploration Guided by Group Theory and Computations. Chemistry of Materials, 2020, 32, 3823-3832.	6.7	9
21	A charge density prediction model for hydrocarbons using deep neural networks. Machine Learning: Science and Technology, 2020, 1, 025003.	5.0	15
22	Iterative-Learning Strategy for the Development of Application-Specific Atomistic Force Fields. Journal of Physical Chemistry C, 2019, 123, 20715-20722.	3.1	20
23	Machine learning models for the lattice thermal conductivity prediction of inorganic materials. Computational Materials Science, 2019, 170, 109155.	3.0	84
24	General Atomic Neighborhood Fingerprint for Machine Learning-Based Methods. Journal of Physical Chemistry C, 2019, 123, 15859-15866.	3.1	33
25	Electrochemical Stability Window of Polymeric Electrolytes. Chemistry of Materials, 2019, 31, 4598-4604.	6.7	83
26	PhysicallyÂinformed artificial neural networks for atomistic modeling of materials. Nature Communications, 2019, 10, 2339.	12.8	177
27	Multifidelity Information Fusion with Machine Learning: A Case Study of Dopant Formation Energies in Hafnia. ACS Applied Materials & amp; Interfaces, 2019, 11, 24906-24918.	8.0	49
28	Thermodynamics of Phase Stability and Ferroelectricity From First Principles. , 2019, , 245-289.		13
29	Solving the electronic structure problem with machine learning. Npj Computational Materials, 2019, 5,	8.7	191
30	A comprehensive computational study of adatom diffusion on the aluminum (1â€Oâ€O) surface. Computational Materials Science, 2019, 158, 353-358.	3.0	9
31	Crystal Morphology and Phase Transformation of LiAlO ₂ : Combined Experimental and First-Principles Studies. Journal of Physical Chemistry C, 2018, 122, 28797-28804.	3.1	14
32	Electronic Structure of Polymer Dielectrics: The Role of Chemical and Morphological Complexity. Chemistry of Materials, 2018, 30, 7699-7706.	6.7	26
33	Factors Favoring Ferroelectricity in Hafnia: A First-Principles Computational Study. Journal of Physical Chemistry C, 2017, 121, 4139-4145.	3.1	158
34	Machine Learning Force Fields: Construction, Validation, and Outlook. Journal of Physical Chemistry C, 2017, 121, 511-522.	3.1	368
35	Dopants Promoting Ferroelectricity in Hafnia: Insights from a comprehensive Chemical Space Exploration. Chemistry of Materials, 2017, 29, 9102-9109.	6.7	139
36	A universal strategy for the creation of machine learning-based atomistic force fields. Npj Computational Materials, 2017, 3, .	8.7	188

#	Article	IF	CITATIONS
37	Machine learning in materials informatics: recent applications and prospects. Npj Computational Materials, 2017, 3, .	8.7	1,013
38	Stabilization of metastable phases in hafnia owing to surface energy effects. Applied Physics Letters, 2016, 108, .	3.3	108