List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2920048/publications.pdf Version: 2024-02-01

ΤΗΟΜΛς ΕΙΛΚΙ

#	Article	IF	CITATIONS
1	Dexamethasone in Hospitalized Patients with Covid-19. New England Journal of Medicine, 2021, 384, 693-704.	13.9	8,063
2	A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19. New England Journal of Medicine, 2020, 382, 1787-1799.	13.9	4,209
3	Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet, The, 2020, 395, 1569-1578.	6.3	2,875
4	Effect of Hydroxychloroquine in Hospitalized Patients with Covid-19. New England Journal of Medicine, 2020, 383, 2030-2040.	13.9	1,013
5	Lopinavir–ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet, The, 2020, 396, 1345-1352.	6.3	569
6	Association Between Administration of IL-6 Antagonists and Mortality Among Patients Hospitalized for COVID-19. JAMA - Journal of the American Medical Association, 2021, 326, 499.	3.8	498
7	Adaptive designs in clinical trials: why use them, and how to run and report them. BMC Medicine, 2018, 16, 29.	2.3	398
8	A generalized Dunnett test for multi-arm multi-stage clinical studies with treatment selection. Biometrika, 2012, 99, 494-501.	1.3	109
9	A review of statistical updating methods for clinical prediction models. Statistical Methods in Medical Research, 2018, 27, 185-197.	0.7	91
10	Optimal design of multiâ€arm multiâ€stage trials. Statistics in Medicine, 2012, 31, 4269-4279.	0.8	85
11	Optimal dose and safety of molnupiravir in patients with early SARS-CoV-2: a Phase I, open-label, dose-escalating, randomized controlled study. Journal of Antimicrobial Chemotherapy, 2021, 76, 3286-3295.	1.3	84
12	Assessing differential effects: Applying regression mixture models to identify variations in the influence of family resources on academic achievement Developmental Psychology, 2009, 45, 1298-1313.	1.2	73
13	Some recommendations for multi-arm multi-stage trials. Statistical Methods in Medical Research, 2016, 25, 716-727.	0.7	67
14	Probabilistic relabelling strategies for the label switching problem in Bayesian mixture models. Statistics and Computing, 2010, 20, 357-366.	0.8	65
15	Creating a Framework for Conducting Randomized Clinical Trials during Disease Outbreaks. New England Journal of Medicine, 2020, 382, 1366-1369.	13.9	63
16	Tocilizumab in patients with anti-TNF refractory juvenile idiopathic arthritis-associated uveitis (APTITUDE): a multicentre, single-arm, phase 2 trial. Lancet Rheumatology, The, 2020, 2, e135-e141.	2.2	62
17	Estimation of pharmacokinetic parameters with the R package PK. Pharmaceutical Statistics, 2011, 10, 284-288.	0.7	60
18	The Adaptive designs CONSORT Extension (ACE) statement: a checklist with explanation and elaboration guideline for reporting randomised trials that use an adaptive design. BMJ, The, 2020, 369, m115.	3.0	57

#	Article	IF	CITATIONS
19	Modeling Predictors of Latent Classes in Regression Mixture Models. Structural Equation Modeling, 2016, 23, 601-614.	2.4	56
20	How to design a dose-finding study using the continual reassessment method. BMC Medical Research Methodology, 2019, 19, 18.	1.4	56
21	Endpoints for randomized controlled clinical trials for COVID-19 treatments. Clinical Trials, 2020, 17, 472-482.	0.7	55
22	Principles of dose finding studies in cancer: a comparison of trial designs. Cancer Chemotherapy and Pharmacology, 2013, 71, 1107-1114.	1.1	48
23	A Bayesian adaptive design for clinical trials in rare diseases. Computational Statistics and Data Analysis, 2017, 113, 136-153.	0.7	46
24	Differential Effects of Parental Controls on Adolescent Substance Use: For Whom is the Family Most Important?. Journal of Quantitative Criminology, 2013, 29, 347-368.	2.0	44
25	Identification of predicted individual treatment effects in randomized clinical trials. Statistical Methods in Medical Research, 2018, 27, 142-157.	0.7	43
26	Adding flexibility to clinical trial designs: an example-based guide to the practical use of adaptive designs. BMC Medicine, 2020, 18, 352.	2.3	42
27	Efficient Adaptive Designs for Clinical Trials of Interventions for COVID-19. Statistics in Biopharmaceutical Research, 2020, 12, 483-497.	0.6	40
28	Uptake of novel statistical methods for early-phase clinical studies in the UK public sector. Clinical Trials, 2013, 10, 344-346.	0.7	35
29	A Review of Perspectives on the Use of Randomization in Phase II Oncology Trials. Journal of the National Cancer Institute, 2019, 111, 1255-1262.	3.0	35
30	Extrapolation of efficacy and other data to support the development of new medicines for children: A systematic review of methods. Statistical Methods in Medical Research, 2018, 27, 398-413.	0.7	33
31	Not Quite Normal: Consequences of Violating the Assumption of Normality in Regression Mixture Models. Structural Equation Modeling, 2012, 19, 227-249.	2.4	32
32	Sample Size Reassessment and Hypothesis Testing in Adaptive Survival Trials. PLoS ONE, 2016, 11, e0146465.	1.1	32
33	Using Multilevel Mixtures to Evaluate Intervention Effects in Group Randomized Trials. Multivariate Behavioral Research, 2008, 43, 289-326.	1.8	30
34	A Theoretical Framework for Estimation of AUCs in Complete and Incomplete Sampling Designs. Statistics in Biopharmaceutical Research, 2009, 1, 176-184.	0.6	30
35	One―and twoâ€stage design proposals for a phase II trial comparing three active treatments with control using an ordered categorical endpoint. Statistics in Medicine, 2009, 28, 828-847.	0.8	30
36	Evaluating Differential Effects Using Regression Interactions and Regression Mixture Models. Educational and Psychological Measurement, 2015, 75, 677-714.	1.2	28

ΤΗΟΜΑS F JAKI

#	Article	IF	CITATIONS
37	Development process of a consensus-driven CONSORT extension for randomised trials using an adaptive design. BMC Medicine, 2018, 16, 210.	2.3	28
38	Flexible sequential designs for multiâ€arm clinical trials. Statistics in Medicine, 2014, 33, 3269-3279.	0.8	27
39	Multi-arm clinical trials with treatment selection: what can be gained and at what price?. Clinical Investigation, 2015, 5, 393-399.	0.0	26
40	Subgroup identification in clinical trials via the predicted individual treatment effect. PLoS ONE, 2018, 13, e0205971.	1.1	26
41	A note on statistical analysis of organ weights in non-clinical toxicological studies. Toxicology and Applied Pharmacology, 2009, 240, 117-122.	1.3	25
42	A formal comparison of different methods for establishing cut points to distinguish positive and negative samples in immunoassays. Journal of Pharmaceutical and Biomedical Analysis, 2011, 55, 1148-1156.	1.4	25
43	Estimation of AUC from 0 to Infinity in Serial Sacrifice Designs. Journal of Pharmacokinetics and Pharmacodynamics, 2005, 32, 757-766.	0.8	24
44	Simultaneous confidence intervals that are compatible with closed testing in adaptive designs. Biometrika, 2013, 100, 985-996.	1.3	23
45	Adaptive clinical trials in tuberculosis: applications, challenges and solutions. International Journal of Tuberculosis and Lung Disease, 2015, 19, 626-634.	0.6	23
46	The Effects of Sample Size on the Estimation of Regression Mixture Models. Educational and Psychological Measurement, 2019, 79, 358-384.	1.2	23
47	An Information Theoretic Phase I–II Design for Molecularly Targeted Agents That Does Not Require an Assumption of Monotonicity. Journal of the Royal Statistical Society Series C: Applied Statistics, 2019, 68, 347-367.	0.5	23
48	AGILE-ACCORD: A Randomized, Multicentre, Seamless, Adaptive Phase I/II Platform Study to Determine the Optimal Dose, Safety and Efficacy of Multiple Candidate Agents for the Treatment of COVID-19: A structured summary of a study protocol for a randomised platform trial. Trials, 2020, 21, 544.	0.7	23
49	Confidence intervals for ratios of AUCs in the case of serial sampling: a comparison of seven methods. Pharmaceutical Statistics, 2009, 8, 12-24.	0.7	22
50	Non-compartmental estimation of pharmacokinetic parameters in serial sampling designs. Journal of Pharmacokinetics and Pharmacodynamics, 2009, 36, 479-494.	0.8	21
51	Nonâ€compartmental estimation of pharmacokinetic parameters for flexible sampling designs. Statistics in Medicine, 2012, 31, 1059-1073.	0.8	21
52	Statistical evaluation of toxicological assays: Dunnett or Williams test—take both. Archives of Toxicology, 2013, 87, 1901-1910.	1.9	21
53	Statistical approaches for the determination of cut points in anti-drug antibody bioassays. Journal of Immunological Methods, 2015, 418, 84-100.	0.6	19
54	Considerations on covariates and endpoints in multiâ€arm multiâ€stage clinical trials selecting all promising treatments. Statistics in Medicine, 2013, 32, 1150-1163.	0.8	18

#	Article	IF	CITATIONS
55	Using regression mixture models with non-normal data: examining an ordered polytomous approach. Journal of Statistical Computation and Simulation, 2013, 83, 759-772.	0.7	18
56	Design and estimation in clinical trials with subpopulation selection. Statistics in Medicine, 2018, 37, 4335-4352.	0.8	18
57	Clinical Drug Development in Epilepsy Revisited: A Proposal for a New Paradigm Streamlined Using Extrapolation. CNS Drugs, 2016, 30, 1011-1017.	2.7	17
58	Analysing malaria drug trials on a perâ€individual or perâ€clone basis: a comparison of methods. Statistics in Medicine, 2013, 32, 3020-3038.	0.8	16
59	Impact of an equality constraint on the class-specific residual variances in regression mixtures: A Monte Carlo simulation study. Behavior Research Methods, 2016, 48, 813-826.	2.3	15
60	Factorial versus multi-arm multi-stage designs for clinical trials with multiple treatments. Statistics in Medicine, 2017, 36, 563-580.	0.8	15
61	Statistical consideration when adding new arms to ongoing clinical trials: the potentials and the caveats. Trials, 2021, 22, 203.	0.7	15
62	The <i>R</i> Package MAMS for Designing Multi-Arm Multi-Stage Clinical Trials. Journal of Statistical Software, 2019, 88, .	1.8	15
63	Designing exploratory cancer trials using change in tumour size as primary endpoint. Statistics in Medicine, 2013, 32, 2544-2554.	0.8	14
64	Bayesian adaptive doseâ€escalation procedures for binary and continuous responses utilizing a gain function. Pharmaceutical Statistics, 2015, 14, 479-487.	0.7	14
65	Understanding clinical prediction models as â€~innovations': a mixed methods study in UK family practice. BMC Medical Informatics and Decision Making, 2016, 16, 106.	1.5	14
66	Simultaneous confidence regions for multivariate bioequivalence. Statistics in Medicine, 2017, 36, 4585-4603.	0.8	14
67	Planning multiâ€∎rm screening studies within the context of a drug development program. Statistics in Medicine, 2013, 32, 3424-3435.	0.8	13
68	Estimation in multi-arm two-stage trials with treatment selection and time-to-event endpoint. Statistics in Medicine, 2017, 36, 3137-3153.	0.8	13
69	A benchmark for dose finding studies with continuous outcomes. Biostatistics, 2020, 21, 189-201.	0.9	13
70	Optimization, refinement and reduction of murine <i>in vivo</i> experiments to assess therapeutic approaches for haemophilia A. Laboratory Animals, 2010, 44, 211-217.	0.5	12
71	A novel Phase I/IIa design for early phase oncology studies and its application in the evaluation of MK-0752 in pancreatic cancer. Statistics in Medicine, 2012, 31, 1931-1943.	0.8	12
72	Bayesian adaptive doseâ€escalation designs for simultaneously estimating the optimal and maximum safe dose based on safety and efficacy. Pharmaceutical Statistics, 2017, 16, 396-413.	0.7	12

ΤΗΟΜΑS F JAKI

#	Article	IF	CITATIONS
73	A review of the deterministic and diffusion approximations for stochastic chemical reaction networks. Reaction Kinetics, Mechanisms and Catalysis, 2018, 123, 289-312.	0.8	12
74	Performance of different clinical trial designs to evaluate treatments during an epidemic. PLoS ONE, 2018, 13, e0203387.	1.1	12
75	A critical review of graphics for subgroup analyses in clinical trials. Pharmaceutical Statistics, 2020, 19, 541-560.	0.7	12
76	A framework for prospectively defining progression rules for internal pilot studies monitoring recruitment. Statistical Methods in Medical Research, 2018, 27, 3612-3627.	0.7	11
77	Randomized dose-escalation designs for drug combination cancer trials with immunotherapy. Journal of Biopharmaceutical Statistics, 2019, 29, 359-377.	0.4	11
78	Optimizing subgroup selection in twoâ€stage adaptive enrichment and umbrella designs. Statistics in Medicine, 2021, 40, 2939-2956.	0.8	11
79	Establishing Bioequivalence in Complete and Incomplete Data Designs Using AUCs. Journal of Biopharmaceutical Statistics, 2010, 20, 803-820.	0.4	10
80	Finite Mixtures for Simultaneously Modeling Differential Effects and Nonnormal Distributions. Multivariate Behavioral Research, 2013, 48, 816-844.	1.8	10
81	An evaluation of the bootstrap for model validation in mixture models. Communications in Statistics Part B: Simulation and Computation, 2018, 47, 1028-1038.	0.6	10
82	Doseâ€escalation strategies which use subgroup information. Pharmaceutical Statistics, 2018, 17, 414-436.	0.7	10
83	TAILoR (TelmisArtan and InsuLin Resistance in Human Immunodeficiency Virus [HIV]): An Adaptive-design, Dose-ranging Phase IIb Randomized Trial of Telmisartan for the Reduction of Insulin Resistance in HIV-positive Individuals on Combination Antiretroviral Therapy. Clinical Infectious Diseases, 2020, 70, 2062-2072.	2.9	10
84	The adaptive designs CONSORT extension (ACE) statement: a checklist with explanation and elaboration guideline for reporting randomised trials that use an adaptive design. Trials, 2020, 21, 528.	0.7	10
85	Applying methods for personalized medicine to the treatment of alcohol use disorder Journal of Consulting and Clinical Psychology, 2021, 89, 288-300.	1.6	10
86	Assessing Systemic Drug Exposure in Repeated Dose Toxicity Studies in the Case of Complete and Incomplete Sampling. Biometrical Journal, 2009, 51, 1017-1029.	0.6	9
87	Telmisartan and Insulin Resistance in HIV (TAILoR): protocol for a dose-ranging phase II randomised open-labelled trial of telmisartan as a strategy for the reduction of insulin resistance in HIV-positive individuals on combination antiretroviral therapy. BMJ Open, 2015, 5, e009566.	0.8	9
88	Multi-arm multi-stage trials can improve the efficiency of finding effective treatments for stroke: a case study. BMC Cardiovascular Disorders, 2018, 18, 215.	0.7	9
89	An information theoretic approach for selecting arms in clinical trials. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2020, 82, 1223-1247.	1.1	9
90	Methods for Non-Compartmental Pharmacokinetic Analysis With Observations Below the Limit of Quantification. Statistics in Biopharmaceutical Research, 2021, 13, 59-70.	0.6	9

ΤΗΟΜΑS F JAKI

#	Article	IF	CITATIONS
91	A benchmark for dose-finding studies with unknown ordering. Biostatistics, 2022, 23, 721-737.	0.9	9
92	Maximum Kernel Likelihood Estimation. Journal of Computational and Graphical Statistics, 2008, 17, 976-993.	0.9	8
93	A review of statistical designs for improving the efficiency of phase II studies in oncology. Statistical Methods in Medical Research, 2016, 25, 1010-1021.	0.7	8
94	Using an Interaction Parameter in Model-Based Phase I Trials for Combination Treatments? A Simulation Study. International Journal of Environmental Research and Public Health, 2021, 18, 345.	1.2	8
95	A practical design for a dualâ€agent doseâ€escalation trial that incorporates pharmacokinetic data. Statistics in Medicine, 2015, 34, 2138-2164.	0.8	7
96	Designing multiâ€arm multiâ€stage clinical trials using a risk–benefit criterion for treatment selection. Statistics in Medicine, 2016, 35, 522-533.	0.8	7
97	Repeated measures regression mixture models. Behavior Research Methods, 2020, 52, 591-606.	2.3	7
98	Designing Multi-arm Multi-stage Clinical Studies. , 2014, , 51-69.		7
99	Generalisations of a Bayesian decision-theoretic randomisation procedure and the impact of delayed responses. Computational Statistics and Data Analysis, 2022, 174, 107407.	0.7	7
100	Recording Lectures as a Service in a Service Course. Journal of Statistics Education, 2009, 17, .	1.4	6
101	Estimation in AB/BA crossover trials with application to bioequivalence studies with incomplete and complete data designs. Statistics in Medicine, 2013, 32, 5469-5483.	0.8	6
102	Tilting the lasso by knowledge-based post-processing. BMC Bioinformatics, 2016, 17, 344.	1.2	6
103	A false sense of security? Can tiered approach be trusted to accurately classify immunogenicity samples?. Journal of Pharmaceutical and Biomedical Analysis, 2016, 128, 166-173.	1.4	6
104	Using Multilevel Regression Mixture Models to Identify Level-1 Heterogeneity in Level-2 Effects. Structural Equation Modeling, 2016, 23, 259-269.	2.4	6
105	A proposal for a new PhD level curriculum on quantitative methods for drug development. Pharmaceutical Statistics, 2018, 17, 593-606.	0.7	6
106	A novel measure of drug benefit–risk assessment based on Scale Loss Score. Statistical Methods in Medical Research, 2019, 28, 2738-2753.	0.7	6
107	Instrumental Variable Estimation in Semi-Parametric Additive Hazards Models. Biometrics, 2019, 75, 110-120.	0.8	6
108	Improving safety of the continual reassessment method via a modified allocation rule. Statistics in Medicine, 2020, 39, 906-922.	0.8	6

#	Article	IF	CITATIONS
109	Designing and evaluating dose-escalation studies made easy: The MoDEsT web app. Clinical Trials, 2020, 17, 147-156.	0.7	6
110	A surface-free design for phase I dual-agent combination trials. Statistical Methods in Medical Research, 2020, 29, 3093-3109.	0.7	6
111	Estimation of treatment effects following a sequential trial of multiple treatments. Statistics in Medicine, 2020, 39, 1593-1609.	0.8	6
112	A flexible design for advanced Phase I/II clinical trials with continuous efficacy endpoints. Biometrical Journal, 2019, 61, 1477-1492.	0.6	5
113	Symmetric maximum kernel likelihood estimation. Journal of Statistical Computation and Simulation, 2011, 81, 193-206.	0.7	4
114	A hybrid method to estimate the minimum effective dose for monotone and nonâ€monotone dose–response relationships. Biometrics, 2014, 70, 103-109.	0.8	4
115	A comparison of methods for classifying samples as truly specific with confirmatory immunoassays. Journal of Pharmaceutical and Biomedical Analysis, 2014, 88, 27-35.	1.4	4
116	Optimal Designs for Non-Compartmental Analysis of Pharmacokinetic Studies. Statistics in Biopharmaceutical Research, 2018, 10, 255-263.	0.6	4
117	An alternative method to analyse the biomarkerâ€strategy design. Statistics in Medicine, 2018, 37, 4636-4651.	0.8	4
118	A Bayesian model to estimate the cutoff and the clinical utility of a biomarker assay. Statistical Methods in Medical Research, 2019, 28, 2538-2556.	0.7	4
119	Loss functions in restricted parameter spaces and their Bayesian applications. Journal of Applied Statistics, 2019, 46, 2314-2337.	0.6	4
120	Bayesian sequential integration within a preclinical pharmacokinetic and pharmacodynamic modeling framework: Lessons learned. Pharmaceutical Statistics, 2019, 18, 486-506.	0.7	4
121	A comparison of stochastic programming methods for portfolio level decision-making. Journal of Biopharmaceutical Statistics, 2020, 30, 405-429.	0.4	4
122	A randomised controlled trial of rosuvastatin for the prevention of aminoglycoside-induced kidney toxicity in children with cystic fibrosis. Scientific Reports, 2020, 10, 1796.	1.6	4
123	Using a problem-based approach to teach statistics to postgraduate science students: A case study. MSOR Connections, 2009, 9, 40-47.	0.1	4
124	A DIAGNOSTIC TOOL FOR CHECKING ASSUMPTIONS OF REGRESSION MIXTURE MODELS. JP Journal of Biostatistics, 2018, 15, 1-20.	0.0	4
125	Costs and staffing resource requirements for adaptive clinical trials: quantitative and qualitative results from the Costing Adaptive Trials project. BMC Medicine, 2021, 19, 251.	2.3	4
126	Practical recommendations for implementing a Bayesian adaptive phase I design during a pandemic. BMC Medical Research Methodology, 2022, 22, 25.	1.4	4

#	Article	IF	CITATIONS
127	An order restricted multiâ€arm multiâ€stage clinical trial design. Statistics in Medicine, 2022, 41, 1613-1626.	0.8	4
128	Direct effects testing: A twoâ€stage procedure to test for effect size and variable importance for correlated binary predictors and a binary response. Statistics in Medicine, 2010, 29, 2544-2556.	0.8	3
129	Why are two mistakes not worse than one? A proposal for controlling the expected number of false claims. Pharmaceutical Statistics, 2016, 15, 362-367.	0.7	3
130	A comparison of phase I dose-finding designs in clinical trials with monotonicity assumption violation. Clinical Trials, 2020, 17, 522-534.	0.7	3
131	Assessing goodnessâ€ofâ€fit for evaluation of doseâ€proportionality. Pharmaceutical Statistics, 2021, 20, 272-281.	0.7	3
132	A novel statistical test for treatment differences in clinical trials using a responseâ€adaptive forwardâ€kooking Gittins Index Rule. Biometrics, 2023, 79, 86-97.	0.8	3
133	A doseâ€finding design for dualâ€agent trials with patientâ€specific doses for one agent with application to an opiate detoxification trial. Pharmaceutical Statistics, 2022, 21, 476-495.	0.7	3
134	Assessing the feasibility of injectable growth-promoting therapy in Crohn's disease. Pilot and Feasibility Studies, 2016, 2, 71.	0.5	2
135	Model selection based on combined penalties for biomarker identification. Journal of Biopharmaceutical Statistics, 2018, 28, 735-749.	0.4	2
136	Subgroup analysis of treatment effects for misclassified biomarkers with timeâ€ŧoâ€event data. Journal of the Royal Statistical Society Series C: Applied Statistics, 2019, 68, 1447-1463.	0.5	2
137	Confidence regions for treatment effects in subgroups in biomarker stratified designs. Biometrical Journal, 2019, 61, 27-39.	0.6	2
138	A quantitative framework to inform extrapolation decisions in children. Journal of the Royal Statistical Society Series A: Statistics in Society, 2020, 183, 515-534.	0.6	2
139	Study to evaluate the optimal dose of remifentanil required to ensure apnea during magnetic resonance imaging of the heart under general anesthesia. Paediatric Anaesthesia, 2021, 31, 548-556.	0.6	2
140	Bridging across patient subgroups in phase I oncology trials that incorporate animal data. Statistical Methods in Medical Research, 2021, 30, 1057-1071.	0.7	2
141	Individual differences in the effects of the ACTION-PAC intervention: an application of personalized medicine in the prevention and treatment of obesity. Journal of Behavioral Medicine, 2022, 45, 211-226.	1.1	2
142	Recovering Independent Associations in Genetics: A Comparison. Journal of Computational Biology, 2012, 19, 978-987.	0.8	1
143	Comparing sampling methods for pharmacokinetic studies using model averaged derived parameters. Statistics in Medicine, 2017, 36, 4301-4315.	0.8	1
144	Response to comments on Jaki et al., A proposal for a new PhD level curriculum on quantitative methods for drug development. Pharm Stat17(5):593â€606, Sep/Oct 2018., DOI: https://doi.org/10.1002/pst.1873. Pharmaceutical Statistics, 2019, 18, 284-286.	0.7	1

#	Article	IF	CITATIONS
145	Using a doseâ€finding benchmark to quantify the loss incurred by dichotomization in Phase II doseâ€ranging studies. Biometrical Journal, 2020, 62, 1717-1729.	0.6	1
146	Exposure–response modelling approaches for determining optimal dosing rules in children. Statistical Methods in Medical Research, 2020, 29, 2583-2602.	0.7	1
147	Authors' reply to Comments on â€ [~] Estimation in AB/BA crossover trials with application to bioequivalence studies with incomplete and complete data designs― Statistics in Medicine, 2013, 32, 5487-5488.	0.8	0
148	Asymmetric inner wedge group sequential tests with applications to verifying whether effective drug concentrations are similar in adults and children. Statistics in Medicine, 2017, 36, 426-441.	0.8	0
149	Recurrent events modelling of haemophilia bleeding events. Journal of the Royal Statistical Society Series C: Applied Statistics, 2021, 70, 351-371.	0.5	0
150	Telmisartan to reduce insulin resistance in HIV-positive individuals on combination antiretroviral therapy: the TAILoR dose-ranging Phase II RCT. Efficacy and Mechanism Evaluation, 2019, 6, 1-168.	0.9	0
151	Using biomarkers to allocate patients in a response-adaptive clinical trial. Communications in Statistics Part B: Simulation and Computation, 0, , 1-20.	0.6	0